Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.256
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(14): 3563-3584.e26, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38889727

RESUMO

How evolution at the cellular level potentiates macroevolutionary change is central to understanding biological diversification. The >66,000 rove beetle species (Staphylinidae) form the largest metazoan family. Combining genomic and cell type transcriptomic insights spanning the largest clade, Aleocharinae, we retrace evolution of two cell types comprising a defensive gland-a putative catalyst behind staphylinid megadiversity. We identify molecular evolutionary steps leading to benzoquinone production by one cell type via a mechanism convergent with plant toxin release systems, and synthesis by the second cell type of a solvent that weaponizes the total secretion. This cooperative system has been conserved since the Early Cretaceous as Aleocharinae radiated into tens of thousands of lineages. Reprogramming each cell type yielded biochemical novelties enabling ecological specialization-most dramatically in symbionts that infiltrate social insect colonies via host-manipulating secretions. Our findings uncover cell type evolutionary processes underlying the origin and evolvability of a beetle chemical innovation.


Assuntos
Besouros , Animais , Besouros/genética , Besouros/metabolismo , Evolução Molecular , Benzoquinonas/metabolismo , Filogenia , Genômica , Simbiose/genética , Transcriptoma , Genoma de Inseto
2.
Cell ; 184(26): 6326-6343.e32, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34879231

RESUMO

Animals traversing different environments encounter both stable background stimuli and novel cues, which are thought to be detected by primary sensory neurons and then distinguished by downstream brain circuits. Here, we show that each of the ∼1,000 olfactory sensory neuron (OSN) subtypes in the mouse harbors a distinct transcriptome whose content is precisely determined by interactions between its odorant receptor and the environment. This transcriptional variation is systematically organized to support sensory adaptation: expression levels of more than 70 genes relevant to transforming odors into spikes continuously vary across OSN subtypes, dynamically adjust to new environments over hours, and accurately predict acute OSN-specific odor responses. The sensory periphery therefore separates salient signals from predictable background via a transcriptional rheostat whose moment-to-moment state reflects the past and constrains the future; these findings suggest a general model in which structured transcriptional variation within a cell type reflects individual experience.


Assuntos
Neurônios Receptores Olfatórios/metabolismo , Sensação/genética , Transcrição Gênica , Animais , Encéfalo/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Odorantes , Bulbo Olfatório/metabolismo , Receptores Odorantes/metabolismo , Transcriptoma/genética
3.
Cell ; 174(4): 1015-1030.e16, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096299

RESUMO

The mammalian brain is composed of diverse, specialized cell populations. To systematically ascertain and learn from these cellular specializations, we used Drop-seq to profile RNA expression in 690,000 individual cells sampled from 9 regions of the adult mouse brain. We identified 565 transcriptionally distinct groups of cells using computational approaches developed to distinguish biological from technical signals. Cross-region analysis of these 565 cell populations revealed features of brain organization, including a gene-expression module for synthesizing axonal and presynaptic components, patterns in the co-deployment of voltage-gated ion channels, functional distinctions among the cells of the vasculature and specialization of glutamatergic neurons across cortical regions. Systematic neuronal classifications for two complex basal ganglia nuclei and the striatum revealed a rare population of spiny projection neurons. This adult mouse brain cell atlas, accessible through interactive online software (DropViz), serves as a reference for development, disease, and evolution.


Assuntos
Encéfalo/metabolismo , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Análise de Célula Única/métodos , Transcriptoma , Animais , Encéfalo/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Immunity ; 56(9): 2121-2136.e6, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37659412

RESUMO

Genetic association studies have demonstrated the critical involvement of the microglial immune response in Alzheimer's disease (AD) pathogenesis. Phospholipase C-gamma-2 (PLCG2) is selectively expressed by microglia and functions in many immune receptor signaling pathways. In AD, PLCG2 is induced uniquely in plaque-associated microglia. A genetic variant of PLCG2, PLCG2P522R, is a mild hypermorph that attenuates AD risk. Here, we identified a loss-of-function PLCG2 variant, PLCG2M28L, that confers an increased AD risk. PLCG2P522R attenuated disease in an amyloidogenic murine AD model, whereas PLCG2M28L exacerbated the plaque burden associated with altered phagocytosis and Aß clearance. The variants bidirectionally modulated disease pathology by inducing distinct transcriptional programs that identified microglial subpopulations associated with protective or detrimental phenotypes. These findings identify PLCG2M28L as a potential AD risk variant and demonstrate that PLCG2 variants can differentially orchestrate microglial responses in AD pathogenesis that can be therapeutically targeted.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Estudos de Associação Genética , Microglia , Fagocitose/genética , Fenótipo , Placa Amiloide , Fosfolipase C gama/metabolismo
5.
Genes Dev ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39168637

RESUMO

The SAGA complex is an evolutionarily conserved histone acetyltransferase complex and transcription coactivator essential for development and disease. Dysregulation of SAGA is implicated in various human diseases, including cancer. In this issue of Genes & Development, Chen et al. (doi/10.1101/gad.351789.124) uncover a critical role for SAGA in multiple myeloma wherein SAGA's ADA2B component is required for the expression of mTORC1 pathway genes and targets of the MYC, E2F, and MAF (musculoaponeurotic fibrosarcoma) transcription factors. SAGA cooperates with MYC and MAF to sustain oncogenic gene expression programs vital for multiple myeloma survival and thus may serve as a therapeutic target for future cancer therapies.

6.
Genes Dev ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39168636

RESUMO

Despite recent advances in therapeutic treatments, multiple myeloma (MM) remains an incurable malignancy. Epigenetic factors contribute to the initiation, progression, relapse, and clonal heterogeneity in MM, but our knowledge on epigenetic mechanisms underlying MM development is far from complete. The SAGA complex serves as a coactivator in transcription and catalyzes acetylation and deubiquitylation. Analyses of data sets in the Cancer Dependency Map Project revealed that many SAGA components are selective dependencies in MM. To define SAGA-specific functions, we focused on ADA2B, the only subunit in the lysine acetyltransferase (KAT) module that specifically functions in SAGA. Integration of RNA sequencing (RNA-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), and cleavage under targets and release using nuclease assay (CUT&RUN) results identified pathways directly regulated by ADA2B including MTORC1 signaling and oncogenic programs driven by MYC, E2F, and MM-specific MAF. We discovered that ADA2B is recruited to MAF and MYC gene targets, and that MAF shares a majority of its targets with MYC in MM cells. Furthermore, we found that the SANT domain of ADA2B is required for interaction with both GCN5 and PCAF acetyltransferases, incorporation into SAGA, and ADA2B protein stability. Our findings uncover previously unknown SAGA KAT module-dependent mechanisms controlling MM cell growth, revealing a vulnerability that might be exploited for future development of MM therapy.

7.
Trends Biochem Sci ; 49(4): 277-279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184399

RESUMO

Research retreats are elements of scientific graduate training programs. Although expected to provide strong educational value, some students are reluctant to attend. Here, we identify participation barriers and provide guidelines for retreat design that minimize obstacles and establish an inclusive environment to improve attendance and enrichment for all attendees.

8.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38646822

RESUMO

The precise assembly of tissues and organs relies on spatiotemporal regulation of gene expression to coordinate the collective behavior of cells. In Drosophila embryos, the midgut musculature is formed through collective migration of caudal visceral mesoderm (CVM) cells, but how gene expression changes as cells migrate is not well understood. Here, we have focused on ten genes expressed in the CVM and the cis-regulatory sequences controlling their expression. Although some genes are continuously expressed, others are expressed only early or late during migration. Late expression relates to cell cycle progression, as driving string/Cdc25 causes earlier division of CVM cells and accelerates the transition to late gene expression. In particular, we found that the cell cycle effector transcription factor E2F1 is a required input for the late gene CG5080. Furthermore, whereas late genes are broadly expressed in all CVM cells, early gene transcripts are polarized to the anterior or posterior ends of the migrating collective. We show this polarization requires transcription factors Snail, Zfh1 and Dorsocross. Collectively, these results identify two sequential gene expression programs bridged by cell division that support long-distance directional migration of CVM cells.


Assuntos
Divisão Celular , Movimento Celular , Proteínas de Drosophila , Regulação da Expressão Gênica no Desenvolvimento , Animais , Movimento Celular/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Divisão Celular/genética , Mesoderma/metabolismo , Mesoderma/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/embriologia , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/citologia , Drosophila/genética , Drosophila/metabolismo , Drosophila/embriologia , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética
9.
Immunity ; 49(5): 886-898.e5, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30446383

RESUMO

Pathogenic Th17 (pTh17) cells drive inflammation and immune-pathology, but whether pTh17 cells are a Th17 cell subset whose generation is under specific molecular control remains unaddressed. We found that Ras p21 protein activator 3 (RASA3) was highly expressed by pTh17 cells relative to non-pTh17 cells and was required specifically for pTh17 generation in vitro and in vivo. Mice conditionally deficient for Rasa3 in T cells showed less pathology during experimental autoimmune encephalomyelitis. Rasa3-deficient T cells acquired a Th2 cell-biased program that dominantly trans-suppressed pTh17 cell generation via interleukin 4 production. The Th2 cell bias of Rasa3-deficient T cells was due to aberrantly elevated transcription factor IRF4 expression. RASA3 promoted proteasome-mediated IRF4 protein degradation by facilitating interaction of IRF4 with E3-ubiquitin ligase Cbl-b. Therefore, a RASA3-IRF4-Cbl-b pathway specifically directs pTh17 cell generation by balancing reciprocal Th17-Th2 cell programs. These findings indicate that a distinct molecular program directs pTh17 cell generation and reveals targets for treating pTh17 cell-related pathology and diseases.


Assuntos
Diferenciação Celular/genética , Proteínas Ativadoras de GTPase/genética , Células Th17/citologia , Células Th17/metabolismo , Células Th2/citologia , Células Th2/metabolismo , Animais , Autoimunidade , Biomarcadores , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Proteínas Ativadoras de GTPase/metabolismo , Expressão Gênica , Imunofenotipagem , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos , Proteólise , RNA Mensageiro , Células Th17/imunologia , Células Th2/imunologia
10.
Genes Dev ; 33(15-16): 1048-1068, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31221665

RESUMO

Fetal hematopoietic stem and progenitor cells (HSPCs) hold promise to cure a wide array of hematological diseases, and we previously found a role for the RNA-binding protein (RBP) Lin28b in respecifying adult HSPCs to resemble their fetal counterparts. Here we show by single-cell RNA sequencing that Lin28b alone was insufficient for complete reprogramming of gene expression from the adult toward the fetal pattern. Using proteomics and in situ analyses, we found that Lin28b (and its closely related paralog, Lin28a) directly interacted with Igf2bp3, another RBP, and their enforced co-expression in adult HSPCs reactivated fetal-like B-cell development in vivo more efficiently than either factor alone. In B-cell progenitors, Lin28b and Igf2bp3 jointly stabilized thousands of mRNAs by binding at the same sites, including those of the B-cell regulators Pax5 and Arid3a as well as Igf2bp3 mRNA itself, forming an autoregulatory loop. Our results suggest that Lin28b and Igf2bp3 are at the center of a gene regulatory network that mediates the fetal-adult hematopoietic switch. A method to efficiently generate induced fetal-like hematopoietic stem cells (ifHSCs) will facilitate basic studies of their biology and possibly pave a path toward their clinical application.


Assuntos
Reprogramação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Redes Reguladoras de Genes , Células-Tronco Hematopoéticas/fisiologia , Proteínas de Ligação a RNA/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Proteínas de Ligação a DNA/genética , Camundongos , MicroRNAs/metabolismo , Modelos Animais , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
11.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38546325

RESUMO

Expression quantitative trait loci (eQTLs) are used to inform the mechanisms of transcriptional regulation in eukaryotic cells. However, the specificity of genome-wide eQTL identification is limited by stringent control for false discoveries. Here, we described a method based on the non-homogeneous Poisson process to identify 125 489 regions with highly frequent, multiple eQTL associations, or 'eQTL-hotspots', from the public database of 59 human tissues or cell types. We stratified the eQTL-hotspots into two classes with their distinct sequence and epigenomic characteristics. Based on these classifications, we developed a machine-learning model, E-SpotFinder, for augmented discovery of tissue- or cell-type-specific eQTL-hotspots. We applied this model to 36 tissues or cell types. Using augmented eQTL-hotspots, we recovered 655 402 eSNPs and reconstructed a comprehensive regulatory network of 2 725 380 cis-interactions among eQTL-hotspots. We further identified 52 012 modules representing transcriptional programs with unique functional backgrounds. In summary, our study provided a framework of epigenome-augmented eQTL analysis and thereby constructed comprehensive genome-wide networks of cis-regulations across diverse human tissues or cell types.


Assuntos
Epigenoma , Epigenômica , Humanos , Bases de Dados Factuais , Células Eucarióticas , Aprendizado de Máquina
12.
Proc Natl Acad Sci U S A ; 120(14): e2205780119, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972431

RESUMO

Genetic progress of crop plants is required to face human population growth and guarantee production stability in increasingly unstable environmental conditions. Breeding is accompanied by a loss in genetic diversity, which hinders sustainable genetic gain. Methodologies based on molecular marker information have been developed to manage diversity and proved effective in increasing long-term genetic gain. However, with realistic plant breeding population sizes, diversity depletion in closed programs appears ineluctable, calling for the introduction of relevant diversity donors. Although maintained with significant efforts, genetic resource collections remain underutilized, due to a large performance gap with elite germplasm. Bridging populations created by crossing genetic resources to elite lines prior to introduction into elite programs can manage this gap efficiently. To improve this strategy, we explored with simulations different genomic prediction and genetic diversity management options for a global program involving a bridging and an elite component. We analyzed the dynamics of quantitative trait loci fixation and followed the fate of allele donors after their introduction into the breeding program. Allocating 25% of total experimental resources to create a bridging component appears highly beneficial. We showed that potential diversity donors should be selected based on their phenotype rather than genomic predictions calibrated with the ongoing breeding program. We recommend incorporating improved donors into the elite program using a global calibration of the genomic prediction model and optimal cross selection maintaining a constant diversity. These approaches use efficiently genetic resources to sustain genetic gain and maintain neutral diversity, improving the flexibility to address future breeding objectives.


Assuntos
Locos de Características Quantitativas , Seleção Genética , Humanos , Fenótipo , Locos de Características Quantitativas/genética , Genômica , Alelos , Melhoramento Vegetal , Variação Genética , Modelos Genéticos
13.
Semin Cancer Biol ; 98: 1-10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029868

RESUMO

Hypoxia is intrinsic to tumours and contributes to malignancy and metastasis while hindering the efficiency of existing treatments. Epigenetic mechanisms play a crucial role in the regulation of hypoxic cancer cell programs, both in the initial phases of sensing the decrease in oxygen levels and during adaptation to chronic lack of oxygen. During the latter, the epigenetic regulation of tumour biology intersects with hypoxia-sensitive transcription factors in a complex network of gene regulation that also involves metabolic reprogramming. Here, we review the current literature on the epigenetic control of gene programs in hypoxic cancer cells. We highlight common themes and features of such epigenetic remodelling and discuss their relevance for the development of therapeutic strategies.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Hipóxia Celular/genética , Hipóxia/genética , Hipóxia/metabolismo , Neoplasias/patologia , Oxigênio/metabolismo
14.
Arterioscler Thromb Vasc Biol ; 44(1): 48-64, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37970716

RESUMO

Recent decades have seen spectacular advances in understanding and managing atherosclerotic cardiovascular disease, but paradoxically, clinical progress has stalled. Residual risk of atherosclerotic cardiovascular disease events is particularly vexing, given recognized lifestyle interventions and powerful modern medications. Why? Atherosclerosis begins early in life, yet clinical trials and mechanistic studies often emphasize terminal, end-stage plaques, meaning on the verge of causing heart attacks and strokes. Thus, current clinical evidence drives us to emphasize aggressive treatments that are delayed until patients already have advanced arterial disease. I call this paradigm "too much, too late." This brief review covers exciting efforts that focus on preventing, or finding and treating, arterial disease before its end-stage. Also included are specific proposals to establish a new evidence base that could justify intensive short-term interventions (induction-phase therapy) to treat subclinical plaques that are early enough perhaps to heal. If we can establish that such plaques are actionable, then broad screening to find them in early midlife individuals would become imperative-and achievable. You have a lump in your coronaries! can motivate patients and clinicians. We must stop thinking of a heart attack as a disease. The real disease is atherosclerosis. In my opinion, an atherosclerotic heart attack is a medical failure. It is a manifestation of longstanding arterial disease that we had allowed to progress to its end-stage, despite knowing that atherosclerosis begins early in life and despite the availability of remarkably safe and highly effective therapies. The field needs a transformational advance to shift the paradigm out of end-stage management and into early interventions that hold the possibility of eradicating the clinical burden of atherosclerotic cardiovascular disease, currently the biggest killer in the world. We urgently need a new evidence base to redirect our main focus from terminal, end-stage atherosclerosis to earlier, and likely reversible, human arterial disease.


Assuntos
Aterosclerose , Infarto do Miocárdio , Placa Aterosclerótica , Humanos , Aterosclerose/diagnóstico , Aterosclerose/prevenção & controle , Artérias
15.
Proc Natl Acad Sci U S A ; 119(37): e2210639119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067317

RESUMO

In Europe, differences among countries in the overall change in happiness since the early 1980s have been due chiefly to the generosity of welfare state programs-increasing happiness going with increasing generosity and declining happiness with declining generosity. This is the principal conclusion from a time-series study of 10 Northern, Western, and Southern European countries with the requisite data. In the present study, cross-section analysis of recent data gives a misleading impression that economic growth, social capital, and/or quality of the environment are driving happiness trends, but in the long-term, time-series data, these variables have no relation to happiness.


Assuntos
Felicidade , Seguridade Social , Atitude , Estudos Transversais , Europa (Continente) , Humanos , Capital Social , Seguridade Social/tendências
16.
Proc Natl Acad Sci U S A ; 119(29): e2122996119, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858354

RESUMO

Low rates of youth voting are a feature of contemporary democracies the world over, with the United States having some of the lowest youth turnout rates in the world. However, far too little is known about how to address the dismal rates of youth voter participation found in many advanced democracies. In this paper, we examine the causal effect of a potentially scalable solution that has attracted renewed interest today: voluntary national service programs targeted at the youth civilian population. Leveraging the large pool of young people who apply each year to participate in the Teach For America (TFA) program-a prominent voluntary national service organization in the United States that integrates college graduates into teaching roles in low-income communities for 2 y-we examine the effect of service participation on voter turnout. To do so, we match TFA administrative records to large-scale nationwide voter files and employ a fuzzy regression discontinuity design around the recommended admittance cutoff for the TFA program. We find that serving as a teacher in the Teach For America national service program has a large effect on civic participation-substantially increasing voter turnout rates among applicants admitted to the program. This effect is noticeably larger than that of previous efforts to increase youth turnout. Our results suggest that civilian national service programs targeted at young people have great promise in helping to narrow the stubborn and enduring political engagement gap between younger and older citizens.

17.
BMC Biol ; 22(1): 78, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600550

RESUMO

BACKGROUND: Regulation of transcription is central to the emergence of new cell types during development, and it often involves activation of genes via proximal and distal regulatory regions. The activity of regulatory elements is determined by transcription factors (TFs) and epigenetic marks, but despite extensive mapping of such patterns, the extraction of regulatory principles remains challenging. RESULTS: Here we study differentially and similarly expressed genes along with their associated epigenomic profiles, chromatin accessibility and DNA methylation, during lineage specification at gastrulation in mice. Comparison of the three lineages allows us to identify genomic and epigenomic features that distinguish the two classes of genes. We show that differentially expressed genes are primarily regulated by distal elements, while similarly expressed genes are controlled by proximal housekeeping regulatory programs. Differentially expressed genes are relatively isolated within topologically associated domains, while similarly expressed genes tend to be located in gene clusters. Transcription of differentially expressed genes is associated with differentially open chromatin at distal elements including enhancers, while that of similarly expressed genes is associated with ubiquitously accessible chromatin at promoters. CONCLUSION: Based on these associations of (linearly) distal genes' transcription start sites (TSSs) and putative enhancers for developmental genes, our findings allow us to link putative enhancers to their target promoters and to infer lineage-specific repertoires of putative driver transcription factors, within which we define subgroups of pioneers and co-operators.


Assuntos
Epigenômica , Genes Essenciais , Animais , Camundongos , Cromatina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica
18.
Clin Infect Dis ; 79(2): 430-433, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626229

RESUMO

Relatively low salaries in infectious diseases (ID) compared to other medical specialties, in a world where cost of living is skyrocketing, are an easy explanation for unmet needs of ID training programs to fill their positions. However, the interest in ID falling short of expectations may reflect that some features of the ID specialty are counter to select pervasive tendencies of modern culture, including (1) slow uptake of innovation into daily routines of ID practitioners, (2) the emphasis of clinical mastery of ID practitioners in an environment of medical corporatization and increased focus on revenue generation, and (3) the fact that ID practice takes societal interests into consideration (eg, prevention of antibiotic resistance) in a world dominated by rights of individuals, frequently at the expense of the common good. This article reflects on these possibilities to determine what steps can be taken to resurrect interest in our specialty.


Assuntos
Doenças Transmissíveis , Humanos , Escolha da Profissão , Infectologia/educação
19.
Stroke ; 55(4): 1136-1140, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456295

RESUMO

The bulk of the current knowledge on atrial fibrillation (AF)-associated stroke risk and benefit of oral anticoagulation derives from studies on patients with clinically diagnosed AF. Subclinical AF (SCAF), defined as AF discovered during the interrogation of prolonged heart monitoring, is often asymptomatic and short-lasting, is associated with increased stroke risk compared with sinus rhythm, and may progress to clinical AF. Despite the extensive screening for and treatment of SCAF, especially in secondary stroke prevention, the net benefit of this practice is not established. Recent studies of SCAF have provided new insights: (1) SCAF is extremely common and may sometimes indicate physiological findings, (2) the stroke risk associated with SCAF is lower than that of clinically detected AF, and (3) any benefit on stroke risk may be countered by increased bleeding risk (no net benefit). How should we interpret the latest knowledge in the setting of poststroke AF screening and prevention?


Assuntos
Fibrilação Atrial , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/diagnóstico , Fibrilação Atrial/complicações , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/tratamento farmacológico , Fatores de Risco
20.
BMC Genomics ; 25(1): 168, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347479

RESUMO

BACKGROUND: Understanding the molecular underpinnings of phenotypic variations is critical for enhancing poultry breeding programs. The Brazilian broiler (TT) and laying hen (CC) lines exhibit striking differences in body weight, growth potential, and muscle mass. Our work aimed to compare the global transcriptome of wing and pectoral tissues during the early development (days 2.5 to 3.5) of these chicken lines, unveiling disparities in gene expression and regulation. RESULTS: Different and bona-fide transcriptomic profiles were identified for the compared lines. A similar number of up- and downregulated differentially expressed genes (DEGs) were identified, considering the broiler line as a reference. Upregulated DEGs displayed an enrichment of protease-encoding genes, whereas downregulated DEGs exhibited a prevalence of receptors and ligands. Gene Ontology analysis revealed that upregulated DEGs were mainly associated with hormone response, mitotic cell cycle, and different metabolic and biosynthetic processes. In contrast, downregulated DEGs were primarily linked to communication, signal transduction, cell differentiation, and nervous system development. Regulatory networks were constructed for the mitotic cell cycle and cell differentiation biological processes, as their contrasting roles may impact the development of distinct postnatal traits. Within the mitotic cell cycle network, key upregulated DEGs included CCND1 and HSP90, with central regulators being NF-κB subunits (RELA and REL) and NFATC2. The cell differentiation network comprises numerous DEGs encoding transcription factors (e.g., HOX genes), receptors, ligands, and histones, while the main regulatory hubs are CREB, AR and epigenetic modifiers. Clustering analyses highlighted PIK3CD as a central player within the differentiation network. CONCLUSIONS: Our study revealed distinct developmental transcriptomes between Brazilian broiler and layer lines. The gene expression profile of broiler embryos seems to favour increased cell proliferation and delayed differentiation, which may contribute to the subsequent enlargement of pectoral tissues during foetal and postnatal development. Our findings pave the way for future functional studies and improvement of targeted traits of economic interest in poultry.


Assuntos
Galinhas , Perfilação da Expressão Gênica , Animais , Feminino , Galinhas/genética , Biologia Computacional , Transcriptoma , Diferenciação Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA