Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genes Dev ; 30(23): 2607-2622, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007784

RESUMO

The Runx3 transcription factor is essential for development and diversification of the dorsal root ganglia (DRGs) TrkC sensory neurons. In Runx3-deficient mice, developing TrkC neurons fail to extend central and peripheral afferents, leading to cell death and disruption of the stretch reflex circuit, resulting in severe limb ataxia. Despite its central role, the mechanisms underlying the spatiotemporal expression specificities of Runx3 in TrkC neurons were largely unknown. Here we first defined the genomic transcription unit encompassing regulatory elements (REs) that mediate the tissue-specific expression of Runx3. Using transgenic mice expressing BAC reporters spanning the Runx3 locus, we discovered three REs-dubbed R1, R2, and R3-that cross-talk with promoter-2 (P2) to drive TrkC neuron-specific Runx3 transcription. Deletion of single or multiple elements either in the BAC transgenics or by CRISPR/Cas9-mediated endogenous ablation established the REs' ability to promote and/or repress Runx3 expression in developing sensory neurons. Our analysis reveals that an intricate combinatorial interplay among the three REs governs Runx3 expression in distinct subtypes of TrkC neurons while concomitantly extinguishing its expression in non-TrkC neurons. These findings provide insights into the mechanism regulating cell type-specific expression and subtype diversification of TrkC neurons in developing DRGs.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/genética , Gânglios Espinais/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios/metabolismo , Elementos Reguladores de Transcrição/genética , Animais , Ataxia/genética , Sítios de Ligação , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Embrião de Mamíferos , Gânglios Espinais/citologia , Deleção de Genes , Locomoção/genética , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fatores de Transcrição/metabolismo
2.
J Neurosci ; 39(44): 8798-8815, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31530644

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons degenerate, resulting in muscle atrophy, paralysis, and fatality. Studies using mouse models of ALS indicate a protracted period of disease development with progressive motor neuron pathology, evident as early as embryonic and postnatal stages. Key missing information includes concomitant alterations in the sensorimotor circuit essential for normal development and function of the neuromuscular system. Leveraging unique brainstem circuitry, we show in vitro evidence for reflex circuit-specific postnatal abnormalities in the jaw proprioceptive sensory neurons in the well-studied SOD1G93A mouse. These include impaired and arrhythmic action potential burst discharge associated with a deficit in Nav1.6 Na+ channels. However, the mechanoreceptive and nociceptive trigeminal ganglion neurons and the visual sensory retinal ganglion neurons were resistant to excitability changes in age-matched SOD1G93A mice. Computational modeling of the observed disruption in sensory patterns predicted asynchronous self-sustained motor neuron discharge suggestive of imminent reflexive defects, such as muscle fasciculations in ALS. These results demonstrate a novel reflex circuit-specific proprioceptive sensory abnormality in ALS.SIGNIFICANCE STATEMENT Neurodegenerative diseases have prolonged periods of disease development and progression. Identifying early markers of vulnerability can therefore help devise better diagnostic and treatment strategies. In this study, we examined postnatal abnormalities in the electrical excitability of muscle spindle afferent proprioceptive neurons in the well-studied SOD1G93A mouse model for neurodegenerative motor neuron disease, amyotrophic lateral sclerosis. Our findings suggest that these proprioceptive sensory neurons are exclusively afflicted early in the disease process relative to sensory neurons of other modalities. Moreover, they presented Nav1.6 Na+ channel deficiency, which contributed to arrhythmic burst discharge. Such sensory arrhythmia could initiate reflexive defects, such as muscle fasciculations in amyotrophic lateral sclerosis, as suggested by our computational model.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Propriocepção/fisiologia , Células Receptoras Sensoriais/fisiologia , Tegmento Mesencefálico/fisiologia , Potenciais de Ação , Animais , Modelos Animais de Doenças , Feminino , Arcada Osseodentária/inervação , Arcada Osseodentária/fisiopatologia , Masculino , Mecanorreceptores/fisiologia , Camundongos Transgênicos , Modelos Neurológicos , Nociceptividade/fisiologia , Superóxido Dismutase-1/genética
3.
Dev Biol ; 442(2): 249-261, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30071216

RESUMO

The development of the sensory nervous system is the result of fine-tuned waves of neurogenesis and apoptosis which control the appropriate number of precursors and newly generated neurons and orient them toward a specific lineage. Neurotrophins and their tyrosine-kinase receptors (RTK) orchestrate this process. They have long been in the scope of the neurotrophic theory which established that a neuron is committed to die unless a trophic factor generated by its target provides it with a survival signal. The neural death has thus always been described as a "default" program, survival being the major player to control the number of cells. New insights have been brought by the gain of function studies which recently demonstrated that TrkC (NTRK3) is a "dependence receptor" able to actively trigger apoptosis in absence of its ligand NT-3. In order to address the role of TrkC pro-apoptotic activity in the control of sensory neurons number, we generated a TrkC gene-trap mutant mice. We found out that this new murine model recapitulates the sensory phenotype of TrkC constitutive mutants, with reduced DRG size and reduced number of DRG neurons. We engineered these mice strain with a lacZ reporter in order to follow the fate of neurons committed to a TrkC lineage and observed that they are specifically protected from NT-3 mediated apoptosis in NT-3/TrkC double knock-out embryos. Finally, using a chicken model we demonstrated that silencing NT-3 emanating from the ventral neural tube induced apoptosis in the DRG anlage. This apoptosis was inhibited by silencing TrkC. This work thus demonstrates that, during in vivo DRG development, TrkC behaves as a two-sided receptor transducing positive signals of neuronal survival in response to NT-3, but actively inducing neuronal cell death when unbound. This functional duality sets adequate number of neurons committed to a TrkC identity in the forming DRG.


Assuntos
Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Receptor trkC/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Embrião de Galinha , Feminino , Gânglios Espinais/embriologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo
4.
Brain Commun ; 5(1): fcad007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865673

RESUMO

Friedreich ataxia is an autosomal recessive multisystem disorder with prominent neurological manifestations and cardiac involvement. The disease is caused by large GAA expansions in the first intron of the FXN gene, encoding the mitochondrial protein frataxin, resulting in downregulation of gene expression and reduced synthesis of frataxin. The selective loss of proprioceptive neurons is a hallmark of Friedreich ataxia, but the cause of the specific vulnerability of these cells is still unknown. We herein perform an in vitro characterization of human induced pluripotent stem cell-derived sensory neuronal cultures highly enriched for primary proprioceptive neurons. We employ neurons differentiated from healthy donors, Friedreich ataxia patients and Friedreich ataxia sibling isogenic control lines. The analysis of the transcriptomic and proteomic profile suggests an impairment of cytoskeleton organization at the growth cone, neurite extension and, at later stages of maturation, synaptic plasticity. Alterations in the spiking profile of tonic neurons are also observed at the electrophysiological analysis of mature neurons. Despite the reversal of the repressive epigenetic state at the FXN locus and the restoration of FXN expression, isogenic control neurons retain many features of Friedreich ataxia neurons. Our study suggests the existence of abnormalities affecting proprioceptors in Friedreich ataxia, particularly their ability to extend towards their targets and transmit proper synaptic signals. It also highlights the need for further investigations to better understand the mechanistic link between FXN silencing and proprioceptive degeneration in Friedreich ataxia.

5.
Neuroscience ; 450: 142-150, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32387250

RESUMO

Throughout his scientific career, Tom Jessell pioneered the spinal cord as a model system to study the molecular programs of neural specification, axon guidance, and connection specificity. His contributions to these fields and more broadly to that of developmental neuroscience will continue to inspire and define many generations of researchers. It is challenging to capture all of Tom's findings in one essay, and therefore, here we wish to briefly highlight his contributions to the problem of connection specificity, with a focus on the spinal sensory-motor reflex circuit. In particular, emphasis will be placed on discoveries from his laboratory that revealed a significant role of positional strategies in establishing selective sensory-motor connections. This work introduced novel principles of neuronal connectivity that may apply to how precise circuit wiring occurs throughout the nervous system.


Assuntos
Neurônios Motores , Medula Espinal , Orientação de Axônios , Lógica , Reflexo
6.
Cell Rep ; 29(12): 3885-3901.e5, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31851921

RESUMO

Reduced expression of the survival motor neuron (SMN) protein causes the neurodegenerative disease spinal muscular atrophy (SMA). Here, we show that adeno-associated virus serotype 9 (AAV9)-mediated delivery of Stasimon-a gene encoding an endoplasmic reticulum (ER)-resident transmembrane protein regulated by SMN-improves motor function in a mouse model of SMA through multiple mechanisms. In proprioceptive neurons, Stasimon overexpression prevents the loss of afferent synapses on motor neurons and enhances sensory-motor neurotransmission. In motor neurons, Stasimon suppresses neurodegeneration by reducing phosphorylation of the tumor suppressor p53. Moreover, Stasimon deficiency converges on SMA-related mechanisms of p53 upregulation to induce phosphorylation of p53 through activation of p38 mitogen-activated protein kinase (MAPK), and pharmacological inhibition of this kinase prevents motor neuron death in SMA mice. These findings identify Stasimon dysfunction induced by SMN deficiency as an upstream driver of distinct cellular cascades that lead to synaptic loss and motor neuron degeneration, revealing a dual contribution of Stasimon to motor circuit pathology in SMA.


Assuntos
Proteínas de Membrana/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/etiologia , Células Receptoras Sensoriais/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/fisiologia , Sinapses/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Dependovirus/genética , Proteínas de Membrana/administração & dosagem , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Células Receptoras Sensoriais/metabolismo , Sinapses/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA