Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(34): e2315510121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39133851

RESUMO

Mechanical energy, specifically in the form of ultrasound, can induce pressure variations and temperature fluctuations when applied to an aqueous media. These conditions can both positively and negatively affect protein complexes, consequently altering their stability, folding patterns, and self-assembling behavior. Despite much scientific progress, our current understanding of the effects of ultrasound on the self-assembly of amyloidogenic proteins remains limited. In the present study, we demonstrate that when the amplitude of the delivered ultrasonic energy is sufficiently low, it can induce refolding of specific motifs in protein monomers, which is sufficient for primary nucleation; this has been revealed by MD. These ultrasound-induced structural changes are initiated by pressure perturbations and are accelerated by a temperature factor. Furthermore, the prolonged action of low-amplitude ultrasound enables the elongation of amyloid protein nanofibrils directly from natively folded monomeric lysozyme protein, in a controlled manner, until it reaches a critical length. Using solution X-ray scattering, we determined that nanofibrillar assemblies, formed either under the action of sound or from natively fibrillated lysozyme, share identical structural characteristics. Thus, these results provide insights into the effects of ultrasound on fibrillar protein self-assembly and lay the foundation for the potential use of sound energy in protein chemistry.


Assuntos
Amiloide , Muramidase , Amiloide/química , Amiloide/metabolismo , Muramidase/química , Muramidase/metabolismo , Dobramento de Proteína , Temperatura , Ondas Ultrassônicas , Simulação de Dinâmica Molecular
2.
Proc Natl Acad Sci U S A ; 120(3): e2212849120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36630452

RESUMO

Protein folding is crucial for biological activity. Proteins' failure to fold correctly underlies various pathological processes, including amyloidosis, the aggregation of insoluble proteins (e.g., lysozymes) in organs. The exact conditions that trigger the structural transition of amyloids into ß-sheet-rich aggregates are poorly understood, as is the case for the amyloidogenic self-assembly pathway. Ultrasound is routinely used to destabilize a protein's structure and enhance amyloid growth. Here, we report on an unexpected ultrasound effect on lysozyme amyloid species at different stages of aggregation: ultrasound-induced structural perturbation gives rise to nonamyloidogenic folds. Our infrared and X-ray analyses of the chemical, mechanical, and thermal effects of sound on lysozyme's structure found, in addition to the expected ultrasound-induced damage, evidence of irreversible disruption of the ß-sheet fold of fibrillar lysozyme resulting in their structural transformation into monomers with no ß-sheets. This structural transition is reflected in changes in the kinetics of protein self-assembly, namely, either prolonged nucleation or accelerated fibril growth. Using solution X-ray scattering, we determined the structure, the mass fraction of lysozyme monomer, and the morphology of its filamentous assemblies formed under different sound parameters. A nanomechanical analysis of ultrasound-modified protein assemblies revealed a correlation between the ß-sheet content and elastic modulus of the protein material. Suppressing one of the ultrasound-derived effects allowed us to control the structural transformations of lysozyme. Overall, our comprehensive investigation establishes the boundary conditions under which ultrasound damages protein structure and fold. This knowledge can be utilized to impose medically desirable structural modifications on amyloid ß-sheet-rich proteins.


Assuntos
Amiloidose , Muramidase , Humanos , Muramidase/química , Peptídeos beta-Amiloides/química , Amiloide/química , Dobramento de Proteína
3.
J Biol Chem ; 300(6): 107357, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735476

RESUMO

Bacterial microcompartments are prokaryotic organelles comprising encapsulated enzymes within a thin protein shell. They facilitate metabolic processing including propanediol, choline, glycerol, and ethanolamine utilization, and they accelerate carbon fixation in cyanobacteria. Enzymes targeted to the inside of the microcompartment frequently possess a cargo-encapsulation peptide, but the site to which the peptide binds is unclear. We provide evidence that the encapsulation peptides bind to the hydrophobic groove formed between tessellating subunits of the shell proteins. In silico docking studies provide a compelling model of peptide binding to this prominent hydrophobic groove. This result is consistent with the now widely accepted view that the convex side of the shell oligomers faces the lumen of the microcompartment. The binding of the encapsulation peptide to the groove between tessellating shell protein tiles explains why it has been difficult to define the peptide binding site using other methods, provides a mechanism by which encapsulation-peptide bearing enzymes can promote shell assembly, and explains how the presence of cargo affects the size and shape of the bacterial microcompartment. This knowledge may be exploited in engineering microcompartments or disease prevention by hampering cargo encapsulation.


Assuntos
Proteínas de Bactérias , Peptídeos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Peptídeos/metabolismo , Peptídeos/química , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Sítios de Ligação , Organelas/metabolismo , Simulação de Acoplamento Molecular
4.
J Biol Chem ; 300(8): 107532, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971311

RESUMO

All cyanobacteria and some chemoautotrophic bacteria fix CO2 into sugars using specialized proteinaceous compartments called carboxysomes. Carboxysomes enclose the enzymes Rubisco and carbonic anhydrase inside a layer of shell proteins to increase the CO2 concentration for efficient carbon fixation by Rubisco. In the ⍺-carboxysome lineage, a disordered and highly repetitive protein named CsoS2 is essential for carboxysome formation and function. Without it, the bacteria require high CO2 to grow. How does a protein predicted to be lacking structure serve as the architectural scaffold for such a vital cellular compartment? In this study, we identify key residues present in the repeats of CsoS2, VTG and Y, which are necessary for building functional ⍺-carboxysomes in vivo. These highly conserved and repetitive residues contribute to the multivalent binding interaction and phase separation behavior between CsoS2 and shell proteins. We also demonstrate 3-component reconstitution of CsoS2, Rubisco, and shell proteins into spherical condensates and show the utility of reconstitution as a biochemical tool to study carboxysome biogenesis. The precise self-assembly of thousands of proteins is crucial for carboxysome formation, and understanding this process could enable their use in alternative biological hosts or industrial processes as effective tools to fix carbon.


Assuntos
Proteínas de Bactérias , Proteínas Intrinsicamente Desordenadas , Ribulose-Bifosfato Carboxilase , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/genética , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química , Motivos de Aminoácidos , Ciclo do Carbono , Organelas/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(15): e2116790119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377815

RESUMO

The glycoprotein von Willebrand factor (VWF) contributes to hemostasis by stanching injuries in blood vessel walls. A distinctive feature of VWF is its assembly into long, helical tubules in endothelial cells prior to secretion. When VWF is released into the bloodstream, these tubules unfurl to release linear polymers that bind subendothelial collagen at wound sites, recruit platelets, and initiate the clotting cascade. VWF evolved from gel-forming mucins, the polymeric glycoproteins that coat and protect exposed epithelia. Despite the divergent function of VWF in blood vessel repair, sequence conservation and shared domain organization imply that VWF retained key aspects of the mucin bioassembly mechanism. Here, we show using cryo-electron microscopy that the ability to form tubules, a property hitherto thought to have arisen as a VWF adaptation to the vasculature, is a feature of the amino-terminal region of mucin. This segment of the human intestinal gel-forming mucin (MUC2) was found to self-assemble into tubules with a striking resemblance to those of VWF itself. To facilitate a comparison, we determined the residue-resolution structure of tubules formed by the homologous segment of VWF. The structures of the MUC2 and VWF tubules revealed the flexible joints and the intermolecular interactions required for tubule formation. Steric constraints in full-length MUC2 suggest that linear filaments, a previously observed supramolecular assembly form, are more likely than tubules to be the physiological mucin storage intermediate. Nevertheless, MUC2 tubules indicate a possible evolutionary origin for VWF tubules and elucidate design principles present in mucins and VWF.


Assuntos
Evolução Molecular , Mucina-1 , Fator de von Willebrand , Mucina-1/química , Domínios Proteicos , Estrutura Secundária de Proteína , Fator de von Willebrand/química
6.
J Biol Chem ; 299(1): 102801, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528065

RESUMO

Protein phase separation is thought to be a primary driving force for the formation of membrane-less organelles, which control a wide range of biological functions from stress response to ribosome biogenesis. Among phase-separating (PS) proteins, many have intrinsically disordered regions (IDRs) that are needed for phase separation to occur. Accurate identification of IDRs that drive phase separation is important for testing the underlying mechanisms of phase separation, identifying biological processes that rely on phase separation, and designing sequences that modulate phase separation. To identify IDRs that drive phase separation, we first curated datasets of folded, ID, and PS ID sequences. We then used these sequence sets to examine how broadly existing amino acid property scales can be used to distinguish between the three classes of protein regions. We found that there are robust property differences between the classes and, consequently, that numerous combinations of amino acid property scales can be used to make robust predictions of protein phase separation. This result indicates that multiple, redundant mechanisms contribute to the formation of phase-separated droplets from IDRs. The top-performing scales were used to further optimize our previously developed predictor of PS IDRs, ParSe. We then modified ParSe to account for interactions between amino acids and obtained reasonable predictive power for mutations that have been designed to test the role of amino acid interactions in driving protein phase separation. Collectively, our findings provide further insight into the classification of IDRs and the elements involved in protein phase separation.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Domínios Proteicos , Aminoácidos
7.
J Biol Chem ; 299(12): 105394, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890775

RESUMO

Collagen IV is an essential structural protein in all metazoans. It provides a scaffold for the assembly of basement membranes, a specialized form of extracellular matrix, which anchors and signals cells and provides microscale tensile strength. Defective scaffolds cause basement membrane destabilization and tissue dysfunction. Scaffolds are composed of α-chains that coassemble into triple-helical protomers of distinct chain compositions, which in turn oligomerize into supramolecular scaffolds. Chloride ions mediate the oligomerization via NC1 trimeric domains, forming an NC1 hexamer at the protomer-protomer interface. The chloride concentration-"chloride pressure"-on the outside of cells is a primordial innovation that drives the assembly and dynamic stabilization of collagen IV scaffolds. However, a Cl-independent mechanism is operative in Ctenophora, Ecdysozoa, and Rotifera, which suggests evolutionary adaptations to environmental or tissue conditions. An understanding of these exceptions, such as the example of Drosophila, could shed light on the fundamentals of how NC1 trimers direct the oligomerization of protomers into scaffolds. Here, we investigated the NC1 assembly of Drosophila. We solved the crystal structure of the NC1 hexamer, determined the chain composition of protomers, and found that Drosophila adapted an evolutionarily unique mechanism of scaffold assembly that requires divalent cations. By studying the Drosophila case we highlighted the mechanistic role of chloride pressure for maintaining functionality of the NC1 domain in humans. Moreover, we discovered that the NC1 trimers encode information for homing protomers to distant tissue locations, providing clues for the development of protein replacement therapy for collagen IV genetic diseases.


Assuntos
Colágeno Tipo IV , Proteínas de Drosophila , Drosophila , Animais , Humanos , Membrana Basal/metabolismo , Cloretos/metabolismo , Colágeno Tipo IV/metabolismo , Drosophila/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Proteínas de Drosophila/metabolismo
8.
J Biol Chem ; 299(11): 105318, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797699

RESUMO

Collagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues-a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as collagen IVα121, collagen IVα345, and collagen IVα121-α556. Chloride ions play a pivotal role in scaffold assembly, based on studies of NC1 hexamers from mammalian tissues. First, Cl- activates a molecular switch within trimeric NC1 domains that initiates protomer oligomerization, forming an NC1 hexamer between adjoining protomers. Second, Cl- stabilizes the hexamer structure. Whether this Cl--dependent mechanism is of fundamental importance in animal evolution is unknown. Here, we developed a simple in vitro method of SDS-PAGE to determine the role of solution Cl- in hexamer stability. Hexamers were characterized from 34 animal species across 15 major phyla, including the basal Cnidarian and Ctenophora phyla. We found that solution Cl- stabilized the quaternary hexamer structure across all phyla except Ctenophora, Ecdysozoa, and Rotifera. Further analysis of hexamers from peroxidasin knockout mice, a model for decreasing hexamer crosslinks, showed that solution Cl- also stabilized the hexamer surface conformation. The presence of sufficient chloride concentration in solution or "chloride pressure" dynamically maintains the native form of the hexamer. Collectively, our findings revealed that chloride pressure on the outside of cells is a primordial innovation that drives and maintains the quaternary and conformational structure of NC1 hexamers of collagen IV scaffolds.


Assuntos
Cloretos , Colágeno Tipo IV , Animais , Camundongos , Subunidades Proteicas/análise , Estrutura Terciária de Proteína , Colágeno Tipo IV/química , Membrana Basal , Mamíferos
9.
J Biol Chem ; 299(5): 104571, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871754

RESUMO

Metastasis-suppressor 1 (MTSS1) is a membrane-interacting scaffolding protein that regulates the integrity of epithelial cell-cell junctions and functions as a tumor suppressor in a wide range of carcinomas. MTSS1 binds phosphoinositide-rich membranes through its I-BAR domain and is capable of sensing and generating negative membrane curvature in vitro. However, the mechanisms by which MTSS1 localizes to intercellular junctions in epithelial cells and contributes to their integrity and maintenance have remained elusive. By carrying out EM and live-cell imaging on cultured Madin-Darby canine kidney cell monolayers, we provide evidence that adherens junctions of epithelial cells harbor lamellipodia-like, dynamic actin-driven membrane folds, which exhibit high negative membrane curvature at their distal edges. BioID proteomics and imaging experiments demonstrated that MTSS1 associates with an Arp2/3 complex activator, the WAVE-2 complex, in dynamic actin-rich protrusions at cell-cell junctions. Inhibition of Arp2/3 or WAVE-2 suppressed actin filament assembly at adherens junctions, decreased the dynamics of junctional membrane protrusions, and led to defects in epithelial integrity. Together, these results support a model in which membrane-associated MTSS1, together with the WAVE-2 and Arp2/3 complexes, promotes the formation of dynamic lamellipodia-like actin protrusions that contribute to the integrity of cell-cell junctions in epithelial monolayers.


Assuntos
Actinas , Proteínas dos Microfilamentos , Pseudópodes , Animais , Cães , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Junções Aderentes/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/metabolismo , Células Madin Darby de Rim Canino , Proteínas de Membrana/metabolismo , Pseudópodes/metabolismo , Proteínas dos Microfilamentos/metabolismo
10.
J Biol Chem ; 299(7): 104901, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37302550

RESUMO

Collagen superfamily of proteins is a major component of the extracellular matrix. Defects in collagens underlie the cause of nearly 40 human genetic diseases in millions of people worldwide. Pathogenesis typically involves genetic alterations of the triple helix, a hallmark structural feature that bestows exceptional mechanical resistance to tensile forces and a capacity to bind a plethora of macromolecules. Yet, there is a paramount knowledge gap in understanding the functionality of distinct sites along the triple helix. Here, we present a recombinant technique to produce triple helical fragments for functional studies. The experimental strategy utilizes the unique capacity of the NC2 heterotrimerization domain of collagen IX to drive three α-chain selection and registering the triple helix stagger. For proof of principle, we produced and characterized long triple helical fragments of collagen IV that were expressed in a mammalian system. The heterotrimeric fragments encompassed the CB3 trimeric peptide of collagen IV, which harbors the binding motifs for α1ß1 and α2ß1 integrins. Fragments were characterized and shown to have a stable triple helix, post-translational modifications, and high affinity and specific binding of integrins. The NC2 technique is a universal tool for the high-yield production of heterotrimeric fragments of collagens. Fragments are suitable for mapping functional sites, determining coding sequences of binding sites, elucidating pathogenicity and pathogenic mechanisms of genetic mutations, and production of fragments for protein replacement therapy.


Assuntos
Colágeno Tipo IV , Integrinas , Multimerização Proteica , Animais , Humanos , Sítios de Ligação , Colágeno Tipo IV/química , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Integrinas/química , Integrinas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Mutação , Domínios Proteicos
11.
Chemistry ; : e202402624, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158515

RESUMO

Supramolecular chemistry achieves higher-order molecular self-assembly through non-covalent interactions. Utilizing supramolecular methods to explore the polymorphism of proteins, the building blocks of life, from a "bottom-up" perspective is essential for constructing diverse and functional biomaterials. In recent years, significant progress has been achieved in the design strategies and functional applications of supramolecular protein self-assembly, becoming a focal point for researchers. This paper reviews classical supramolecular strategies driving protein self-assembly, including electrostatic interactions, metal coordination, hydrogen bonding, hydrophobic interactions, host-guest interactions, and other mechanisms. We discuss how these supramolecular interactions regulate protein assembly processes and highlight protein supramolecular assemblies' unique structural and functional advantages in constructing artificial photosynthetic systems, protein hydrogels, bio-delivery systems, and other functional materials. The enormous potential and significance of supramolecular protein materials are elucidated. Finally, the challenges in preparing and applying protein supramolecular assemblies are summarized, and future development directions are projected.

12.
Arch Biochem Biophys ; 752: 109843, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38072298

RESUMO

Self-assembling nanoparticles (saNP) and nanofibers were found in the recombinant coronavirus SARS-CoV-2 S1, S2, RBD and N proteins purified by affinity chromatography using Ni Sepharose. Scanning electron (SEM), atomic force (AFM) microscopy on mica or graphite surface and in liquid as well as dynamic light scattering (DLS) revealed nanostructures of various sizes. AFM in liquid cell without drying on the surface showed mean height of S1 saNP 80.03 nm, polydispersity index (PDI) 0.006; for S2 saNP mean height 93.32 nm, PDI = 0.008; for N saNP mean height 16.71 nm, PDI = 0.99; for RBD saNP mean height 16.25 nm, PDI = 0.55. Ratios between the height and radius of each saNP in the range 0.1-0.5 suggested solid protein NP but not vesicles with internal empty spaces. The solid but not empty structures of the protein saNP were also confirmed by STEM after treatment of saNP with the standard contrasting agent uranyl acetate. The saNP remained stable after multiple freeze-thaw cycles in water and hyperosmotic solutions for 2 years at -20 °C. Receptor-mediated penetration of the SARS-CoV-2 S1 and RBD saNP in the African green mokey kidney Vero cells with the specific receptors for ß-coronavirus reproduction was more efficient compared to unspecific endocytosis into MDCK cells without the specific receptors. Amyloid-like structures were revealed in the SARS-CoV-2 S1, S2, RBD and N saNP by means of their interaction with Thioflavin T and Congo Red dyes. Taken together, spontaneous formation of the amyloid-like self-assembling nanostructures due to the internal affinity of the SARS-CoV-2 virion proteins might induce proteinopathy in patients, including conformational neurodegenerative diseases, change stability of vaccines and diagnostic systems.


Assuntos
COVID-19 , Nanoestruturas , Animais , Humanos , Chlorocebus aethiops , SARS-CoV-2 , Células Vero , Proteínas Recombinantes , Amiloide , Proteínas Amiloidogênicas
13.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34362850

RESUMO

DegP is an oligomeric protein with dual protease and chaperone activity that regulates protein homeostasis and virulence factor trafficking in the periplasm of gram-negative bacteria. A number of oligomeric architectures adopted by DegP are thought to facilitate its function. For example, DegP can form a "resting" hexamer when not engaged to substrates, mitigating undesired proteolysis of cellular proteins. When bound to substrate proteins or lipid membranes, DegP has been shown to populate a variety of cage- or bowl-like oligomeric states that have increased proteolytic activity. Though a number of DegP's substrate-engaged structures have been robustly characterized, detailed mechanistic information underpinning its remarkable oligomeric plasticity and the corresponding interplay between these dynamics and biological function has remained elusive. Here, we have used a combination of hydrodynamics and NMR spectroscopy methodologies in combination with cryogenic electron microscopy to shed light on the apo-DegP self-assembly mechanism. We find that, in the absence of bound substrates, DegP populates an ensemble of oligomeric states, mediated by self-assembly of trimers, that are distinct from those observed in the presence of substrate. The oligomeric distribution is sensitive to solution ionic strength and temperature and is shifted toward larger oligomeric assemblies under physiological conditions. Substrate proteins may guide DegP toward canonical cage-like structures by binding to these preorganized oligomers, leading to changes in conformation. The properties of DegP self-assembly identified here suggest that apo-DegP can rapidly shift its oligomeric distribution in order to respond to a variety of biological insults.


Assuntos
Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas Periplásmicas/química , Proteínas Periplásmicas/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Microscopia Crioeletrônica , Difusão Dinâmica da Luz , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Mutação , Ressonância Magnética Nuclear Biomolecular/métodos , Concentração Osmolar , Proteínas Periplásmicas/genética , Domínios Proteicos , Redobramento de Proteína , Serina Endopeptidases/genética , Temperatura
14.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338713

RESUMO

Under specific conditions, some proteins can self-assemble into fibrillar structures called amyloids. Initially, these proteins were associated with neurodegenerative diseases in eucaryotes. Nevertheless, they have now been identified in the three domains of life. In bacteria, they are involved in diverse biological processes and are usually useful for the cell. For this reason, they are classified as "functional amyloids". In this work, we focus our analysis on a bacterial functional amyloid called Hfq. Hfq is a pleiotropic regulator that mediates several aspects of genetic expression, mainly via the use of small noncoding RNAs. Our previous work showed that Hfq amyloid-fibrils interact with membranes. This interaction influences Hfq amyloid structure formation and stability, but the specifics of the lipid on the dynamics of this process is unknown. Here, we show, using spectroscopic methods, how lipids specifically drive and modulate Hfq amyloid assembly or, conversely, its disassembly. The reported effects are discussed in light of the consequences for bacterial cell life.


Assuntos
Amiloide , Pequeno RNA não Traduzido , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Pequeno RNA não Traduzido/genética , Bactérias/metabolismo , Lipídeos , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica
15.
J Biol Chem ; 298(8): 102132, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35700826

RESUMO

Tau aggregation underlies neurodegenerative tauopathies, and transcellular propagation of tau assemblies of unique structure, i.e., strains, may underlie the diversity of these disorders. Polyanions have been reported to induce tau aggregation in vitro, but the precise trigger to convert tau from an inert to a seed-competent form in disease states is unknown. RNA triggers tau fibril formation in vitro and has been observed to associate with neurofibrillary tangles in human brain. Here, we have tested whether RNA exerts sequence-specific effects on tau assembly and strain formation. We found that three RNA homopolymers, polyA, polyU, and polyC, all bound tau, but only polyA RNA triggered seed and fibril formation. In addition, polyA:tau seeds and fibrils were sensitive to RNase. We also observed that the origin of the RNA influenced the ability of tau to adopt a structure that would form stable strains. Human RNA potently induced tau seed formation and created tau conformations that preferentially formed stable strains in a HEK293T cell model, whereas RNA from other sources, or heparin, produced strains that were not stably maintained in cultured cells. Finally, we found that soluble, but not insoluble seeds from Alzheimer's disease brain were also sensitive to RNase. We conclude that human RNA specifically induces formation of stable tau strains and may trigger the formation of dominant pathological assemblies that propagate in Alzheimer's disease and possibly other tauopathies.


Assuntos
Doença de Alzheimer , RNA , Tauopatias , Proteínas tau , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Células HEK293 , Humanos , RNA/metabolismo , Ribonucleases/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo
16.
J Biol Chem ; 298(11): 102501, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36116550

RESUMO

The inflammasome is a multiprotein complex that triggers the activation of proinflammatory cytokines. The adapter ASC and its isoform ASCb mediate inflammasome assembly via self-association and oligomerization with other inflammasome proteins by homotypic interactions of their two identical Death Domains, PYD and CARD, connected by a linker of different length: 23 (ASC) and 4 (ASCb) amino acids long. However, ASC is a more potent inflammasome activator compared to ASCb. Thus, adapter isoforms might be involved in the regulation of the inflammatory response. As previously reported, ASC's faster and less polydisperse self-association compared to ASCb points to interdomain flexibility resulting from the linker length as a key factor in inflammasome regulation. To test the influence of linker length in self-association, we have engineered the isoform ASC3X with identical PYD and CARD connected by a 69 amino acid-long linker (i.e., three-times longer than ASC's linker). Real-time NMR and dynamic light scattering data indicate that ASC3X polymerization is less effective and more polydisperse compared to ASC or ASCb. However, transmission electron micrographs show that ASC3X can polymerize into filaments. Comparative interdomain dynamics of the three isoforms obtained from NMR relaxation data reveal that ASCb tumbles as a rod, whereas the PYD and CARD of ASC and ASC3X tumble independently with marginally higher interdomain flexibility in ASC3X. Altogether, our data suggest that ASC's linker length is optimized for self-association by allowing enough flexibility to favor intermolecular homotypic interactions but simultaneously keeping both domains sufficiently close for essential participation in filament formation.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Inflamassomos , Inflamassomos/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Espectroscopia de Ressonância Magnética , Isoformas de Proteínas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
17.
J Biol Chem ; 298(7): 102105, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35671822

RESUMO

Bacterial flagella are nanomachines that enable cells to move at high speeds. Comprising 25 and more different types of proteins, the flagellum is a large supramolecular assembly organized into three widely conserved substructures: a basal body including the rotary motor, a connecting hook, and a long filament. The whole flagellum from Escherichia coli weighs ∼20 MDa, without considering its filament portion, which is by itself a ∼1.6 GDa structure arranged as a multimer of ∼30,000 flagellin protomers. Breakthroughs regarding flagellar structure and function have been achieved in the last few years, mainly because of the revolutionary improvements in 3D cryo-EM methods. This review discusses novel structures and mechanistic insights derived from such high-resolution studies, advancing our understanding of each one of the three major flagellar segments. The rotation mechanism of the motor has been unveiled with unprecedented detail, showing a two-cogwheel machine propelled by a Brownian ratchet device. In addition, by imaging the flagellin-like protomers that make up the hook in its native bent configuration, their unexpected conformational plasticity challenges the paradigm of a two-state conformational rearrangement mechanism for flagellin-fold proteins. Finally, imaging of the filaments of periplasmic flagella, which endow Spirochete bacteria with their singular motility style, uncovered a strikingly asymmetric protein sheath that coats the flagellin core, challenging the view of filaments as simple homopolymeric structures that work as freely whirling whips. Further research will shed more light on the functional details of this amazing nanomachine, but our current understanding has definitely come a long way.


Assuntos
Proteínas de Bactérias , Flagelos , Flagelina , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Flagelos/ultraestrutura , Flagelina/metabolismo , Subunidades Proteicas/metabolismo
18.
Cell Mol Life Sci ; 79(3): 174, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244787

RESUMO

Protein misfolding is a general hallmark of protein deposition diseases, such as Alzheimer's disease or Parkinson's disease, in which different types of aggregated species (oligomers, protofibrils and fibrils) are generated by the cells. Despite widespread interest, the relationship between oligomers and fibrils in the aggregation process and spreading remains elusive. A large variety of experimental evidences supported the idea that soluble oligomeric species of different proteins might be more toxic than the larger fibrillar forms. Furthermore, the lack of correlation between the presence of the typical pathological inclusions and disease sustained this debate. However, recent data show that the ß-sheet core of the α-Synuclein (αSyn) fibrils is unable to establish persistent interactions with the lipid bilayers, but they can release oligomeric species responsible for an immediate dysfunction of the recipient neurons. Reversibly, such oligomeric species could also contribute to pathogenesis via neuron-to-neuron spreading by their direct cell-to-cell transfer or by generating new fibrils, following their neuronal uptake. In this Review, we discuss the various mechanisms of cellular dysfunction caused by αSyn, including oligomer toxicity, fibril toxicity and fibril spreading.


Assuntos
Amiloide/metabolismo , Sinucleinopatias/patologia , alfa-Sinucleína/metabolismo , Amiloide/toxicidade , Humanos , Corpos de Lewy/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Agregados Proteicos , Dobramento de Proteína , Sinucleinopatias/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética
19.
Proc Natl Acad Sci U S A ; 117(1): 388-394, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31848245

RESUMO

Surface layers (S-layers) are crystalline protein coats surrounding microbial cells. S-layer proteins (SLPs) regulate their extracellular self-assembly by crystallizing when exposed to an environmental trigger. However, molecular mechanisms governing rapid protein crystallization in vivo or in vitro are largely unknown. Here, we demonstrate that the Caulobacter crescentus SLP readily crystallizes into sheets in vitro via a calcium-triggered multistep assembly pathway. This pathway involves 2 domains serving distinct functions in assembly. The C-terminal crystallization domain forms the physiological 2-dimensional (2D) crystal lattice, but full-length protein crystallizes multiple orders of magnitude faster due to the N-terminal nucleation domain. Observing crystallization using a time course of electron cryo-microscopy (Cryo-EM) imaging reveals a crystalline intermediate wherein N-terminal nucleation domains exhibit motional dynamics with respect to rigid lattice-forming crystallization domains. Dynamic flexibility between the 2 domains rationalizes efficient S-layer crystal nucleation on the curved cellular surface. Rate enhancement of protein crystallization by a discrete nucleation domain may enable engineering of kinetically controllable self-assembling 2D macromolecular nanomaterials.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/metabolismo , Membrana Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Cálcio/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/ultraestrutura , Membrana Celular/química , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Cristalização , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/ultraestrutura , Mutagênese
20.
J Biol Chem ; 297(5): 101343, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34710373

RESUMO

The complex cellular milieu can spontaneously demix, or phase separate, in a process controlled in part by intrinsically disordered (ID) proteins. A protein's propensity to phase separate is thought to be driven by a preference for protein-protein over protein-solvent interactions. The hydrodynamic size of monomeric proteins, as quantified by the polymer scaling exponent (v), is driven by a similar balance. We hypothesized that mean v, as predicted by protein sequence, would be smaller for proteins with a strong propensity to phase separate. To test this hypothesis, we analyzed protein databases containing subsets of proteins that are folded, disordered, or disordered and known to spontaneously phase separate. We find that the phase-separating disordered proteins, on average, had lower calculated values of v compared with their non-phase-separating counterparts. Moreover, these proteins had a higher sequence-predicted propensity for ß-turns. Using a simple, surface area-based model, we propose a physical mechanism for this difference: transient ß-turn structures reduce the desolvation penalty of forming a protein-rich phase and increase exposure of atoms involved in π/sp2 valence electron interactions. By this mechanism, ß-turns could act as energetically favored nucleation points, which may explain the increased propensity for turns in ID regions (IDRs) utilized biologically for phase separation. Phase-separating IDRs, non-phase-separating IDRs, and folded regions could be distinguished by combining v and ß-turn propensity. Finally, we propose a new algorithm, ParSe (partition sequence), for predicting phase-separating protein regions, and which is able to accurately identify folded, disordered, and phase-separating protein regions based on the primary sequence.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/química , Polímeros/química , Proteínas Intrinsicamente Desordenadas/genética , Conformação Proteica em Folha beta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA