Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 326(4): E443-E453, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324259

RESUMO

Lactate may inhibit lipolysis and thus enhance insulin sensitivity, but there is a lack of metabolic human studies. This study aimed to determine how hyperlactatemia affects lipolysis, glucose- and protein metabolism, and insulin sensitivity in healthy men. In a single-blind, randomized, crossover design, eight healthy men were studied after an overnight fast on two occasions: 1) during a sodium-lactate infusion (LAC) and 2) during a sodium-matched NaCl infusion (CTR). Both days consisted of a 3-h postabsorptive period followed by a 3-h hyperinsulinemic-euglycemic clamp (HEC). Lipolysis rate, endogenous glucose production (EGP), and delta glucose rate of disappearance (ΔRdglu) were evaluated using [9,10-3H]palmitate and [3-3H]glucose tracers. In addition, whole body- and forearm protein metabolism was assessed using [15N]phenylalanine, [2H4]tyrosine, [15N]tyrosine, and [13C]urea tracers. In the postabsorptive period, plasma lactate increased to 2.7 ± 0.5 mmol/L during LAC vs. 0.6 ± 0.3 mmol/L during CTR (P < 0.001). In the postabsorptive period, palmitate flux was 30% lower during LAC compared with CTR (84 ± 32 µmol/min vs. 120 ± 35 µmol/min, P = 0.003). During the HEC, palmitate flux was suppressed similarly during both interventions (P = 0.7). EGP, ΔRdglu, and M value were similar during LAC and CTR. During HEC, LAC increased whole body phenylalanine flux (P = 0.02) and protein synthesis (P = 0.03) compared with CTR; LAC did not affect forearm protein metabolism compared with CTR. Lactate infusion inhibited lipolysis by 30% under postabsorptive conditions but did not affect glucose metabolism or improve insulin sensitivity. In addition, whole body phenylalanine flux was increased. Clinical trial registrations: NCT04710875.NEW & NOTEWORTHY Lactate is a decisive intermediary metabolite, serving as an energy substrate and a signaling molecule. The present study examines the effects of lactate on substrate metabolism and insulin sensitivity in healthy males. Hyperlactatemia reduces lipolysis by 30% without affecting insulin sensitivity and glucose metabolism. In addition, hyperlactatemia increases whole body amino acid turnover rate.


Assuntos
Hiperlactatemia , Resistência à Insulina , Humanos , Masculino , Glicemia/metabolismo , Estudos Cross-Over , Glucose/metabolismo , Técnica Clamp de Glucose , Insulina , Ácido Láctico/farmacologia , Palmitatos , Fenilalanina , Proteínas , Método Simples-Cego , Sódio , Tirosina
2.
BMC Plant Biol ; 24(1): 781, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148017

RESUMO

BACKGROUND: Sudden temperature drops, resulting from extreme weather events, often occur during the boll-setting period of cotton in Xinjiang, China, causing decreased expression of Bacillus thuringiensis (Bt) insecticidal proteins in cotton bolls. The precise threshold temperatures and durations that lead to significant changes in Cry1Ac endotoxin levels under low temperatures remain unclear. To address this, we investigated the effects of different temperatures and stress durations on Cry1Ac endotoxin levels in cotton bolls. In 2020-2021, two Bt transgenic cotton varieties, conventional Sikang1 and hybrid Sikang3, were selected as experimental materials. Various low temperatures (ranging from 16 to 20 °C) with different durations (12 h, 24 h and 48 h) were applied during the peak boll-setting period. RESULTS: As the temperature decreased, the Cry1Ac endotoxin content in the boll shell, fiber, and seed exhibited a declining trend. Moreover, the threshold temperature which caused a significant reduction in Cry1Ac endotoxin content increased with the prolonged duration of low-temperature stress. Among the components of cotton bolls, seeds were most affected by low-temperature stress, with the threshold temperature for a significant reduction in Cry1Ac endotoxin content ranging from 17 °C to 19 °C. Correlation analysis indicated that low temperatures led to a decrease in protein synthesis capacity and an increase in degradation ability, resulting in reduced Cry1Ac endotoxin content. Pathway analysis revealed that both free amino acid and peptidase had significant negative effects on Cry1Ac endotoxin content. CONCLUSION: In summary, when the daily average temperature was ≤ 19 °C, implementing cultural practices to reduce free amino acid content and peptidase activity could serve as effective cold defense strategies for Bt cotton production.


Assuntos
Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Temperatura Baixa , Endotoxinas , Gossypium , Proteínas Hemolisinas , Nitrogênio , Sementes , Gossypium/genética , Gossypium/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sementes/metabolismo , Nitrogênio/metabolismo , Plantas Geneticamente Modificadas , Bacillus thuringiensis
3.
J Nutr ; 154(7): 2029-2041, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801861

RESUMO

BACKGROUND: Infant formulas (IFs), the only adequate substitute to human milk, are complex matrices that require numerous ingredients and processing steps that may impact protein digestion and subsequent amino acid (AA) absorption. OBJECTIVES: The objective was to understand the impact of the protein ingredient quality within IFs on postprandial plasma AA profiles. METHODS: Four isonitrogenous and isocaloric IFs were produced at a semi-industrial scale using whey proteins from different origins (cheese compared with ideal whey) and denaturation levels (IF-A, -B, -C), and caseins with different supramolecular organizations (IF-C, -D). Ten Yucatan minipiglets (12- to 27-d-old) were used as a human infant model and received each IF for 3 d according to a Williams Latin square followed by a 2-d wash-out period. Jugular plasma was regularly sampled from 10 min preprandial to 4 h postprandial on the third day to measure free AAs, urea, insulin, and glucose concentrations. Data were statistically analyzed using a mixed linear model with diet (IFs), time, and sex as fixed factors and piglet as random factor. RESULTS: IFs made with cheese whey (IF-A and -B) elicited significantly higher plasma total and essential AA concentrations than IFs made with ideal whey (IF-C and -D), regardless of the pre- and postprandial times. Most of the differences observed postprandially were explained by AA homeostasis modifications. IFs based on cheese whey induced an increased plasma concentration of Thr due to both a higher Thr content in these IFs and a Thr-limiting degrading capability in piglets. The use of a nonmicellar casein ingredient led to reduced plasma content of AA catabolism markers (IF-D compared with IF-C). CONCLUSIONS: Overall, our results highlight the importance of the protein ingredient quality (composition and structure) within IFs on neonatal plasma AA profiles, which may further impact infant protein metabolism.


Assuntos
Aminoácidos , Animais Recém-Nascidos , Fórmulas Infantis , Porco Miniatura , Proteínas do Soro do Leite , Animais , Suínos , Aminoácidos/sangue , Fórmulas Infantis/química , Masculino , Feminino , Período Pós-Prandial , Glicemia/análise , Insulina/sangue , Caseínas , Proteínas Alimentares
4.
Clin Sci (Lond) ; 138(1): 43-60, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38112515

RESUMO

Nasogastric feeding of protein-rich liquids is a nutritional support therapy that attenuates muscle mass loss. However, whether administration via a nasogastric tube per se augments whole-body or muscle protein anabolism compared with oral administration is unknown. Healthy participants were administered a protein-rich drink (225 ml containing 21 g protein) orally (ORAL; n=13; age 21 ± 1 year; BMI 22.2 ± 0.6 kg·m-2) or via a nasogastric tube (NG; n=13; age 21 ± 1 yr; BMI 23.9 ± 0.9 kg·m-2) in a parallel group design, balanced for sex. L-[ring-2H5]-phenylalanine and L-[3,3-2H2]-tyrosine were infused to measure postabsorptive and postprandial whole-body protein turnover. Skeletal muscle biopsies were collected at -120, 0, 120 and 300 min relative to drink administration to quantify temporal myofibrillar fractional synthetic rates (myoFSR). Drink administration increased serum insulin and plasma amino acid concentrations, and to a greater extent and duration in NG versus ORAL (all interactions P<0.05). Drink administration increased whole-body protein synthesis (P<0.01), suppressed protein breakdown (P<0.001), and created positive net protein balance (P<0.001), but to a similar degree in ORAL and NG (interactions P>0.05). Drink administration increased myoFSR from the postabsorptive state (P<0.01), regardless of route of administration in ORAL and in NG (interaction P>0.05). Nasogastric bolus administration of a protein-rich drink induces insulinaemia and aminoacidaemia to a greater extent than oral administration, but the postprandial increase in whole-body protein turnover and muscle protein synthesis was equivalent between administration routes. Nasogastric administration is a potent intervention to increase postprandial amino acid availability. Future work should assess its utility in overcoming impaired sensitivity to protein feeding, such as that seen in ageing, disuse, and critical care.


Assuntos
Aminoácidos , Proteínas Musculares , Humanos , Adulto Jovem , Adulto , Proteínas Musculares/metabolismo , Aminoácidos/metabolismo , Músculo Esquelético/metabolismo , Fenilalanina/metabolismo , Administração Oral
5.
Crit Rev Food Sci Nutr ; : 1-16, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154210

RESUMO

The rising consumption of plant protein foods and the emergence of meat alternatives have prompted interest in the health benefits of such products, which contain fiber in addition to protein. This review investigates the effect of fiber on plant-based protein metabolism and evaluates its contribution to gut-derived health impacts. Plant proteins, which often come with added fiber, can have varying health outcomes. Factors such as processing and the presence of fiber and starch influence the digestibility of plant proteins, potentially leading to increased proteolytic fermentation in the gut and the production of harmful metabolites. However, fermentable fiber can counteract this effect by serving as a primary substrate for gut microbes, decreasing proteolytic activity. The increased amount of fiber, rather than the protein source itself, plays a significant role in the observed health benefits of plant-based diets in human studies. Differences between extrinsic and intrinsic fiber in the food matrix further impact protein fermentation and digestibility. Thus, in novel protein products without naturally occurring fiber, the health impact may differ from conventional plant protein sources. The influence of various fibers on plant-based protein metabolism throughout the gastrointestinal tract is not fully understood, necessitating further research.

6.
Fish Shellfish Immunol ; 144: 109232, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984611

RESUMO

Dietary supplements containing a functional feed additive have been shown to be beneficial to fish and shellfish aquaculture. However, the functional properties of aquafeed formulations have rarely been reported in fish. This study aimed to investigate the effects of natural free amino acid mix (FAAM) supplementation as a functional solution on the growth performance and nutrient utilization in a carnivorous fish, Asian seabass (Lates calcarifer). Five isonitrogenous and isolipidic diets were prepared with graded supplementation levels of FAAM at 0 % (control group), 0.25 %, 0.50 %, 0.75 %, and 1.0 %, denoted as FAAM0, FAAM0.25, FAAM0.5, FAAM0.75, and FAAM1.0, respectively. The experimental fish were fed different dietary FAAM supplementations to apparent satiation twice daily for eight weeks. Significant improvements were observed in the growth performance of fish among the five groups (P < 0.05). Fish fed with FAAM0.75 displayed significantly increased activities of lysozyme, myeloperoxidase, catalase, and glutathione peroxidase (P < 0.05). The activities of digestive enzymes, including amylase, protease, and lipase, were enhanced by the supplementation of FAAM in the feed (P < 0.05), especially for the groups that contained more than 0.5 % FAAM in the feed. Furthermore, the morphological profile of the intestinal tract, including the mucosal fold height, width, thickness, and goblet cell, increased in fish fed with FAAM at 1.0 % (P < 0.05). Moreover, FAAM supplementation in diets not only modulated the expression of immune-related genes (glutathione peroxidase (GPx), complement (C)3, C4, and C-reactive protein) in the liver but also positively impacted the growth-ralated genes, including growth hormone (GH), GH receptor (GHR), insulin-like growth factor I (IGF-I), and IGF-II. In addition, the amounts of monounsaturated fatty acids (mainly oleic acid (C18:1n9c)) and polyunsaturated fatty acids-especially γ-linolenic acid (C18:3 n6) and α-linolenic acid (C18:3n3)-increased in fish fed with diets containing FAAMs (P < 0.05). Interestingly, the diets supplemented with FAAMs also had a positive effect on the economic indices in terms of revenue-to-cost ratios. These findings provide a scientific basis for the application of FAAMs as a functional solution that can be used in feed formulations for Asian seabass.


Assuntos
Aminoácidos , Perciformes , Animais , Peixes , Dieta/veterinária , Suplementos Nutricionais , Imunidade , Glutationa Peroxidase , Nutrientes , Ração Animal/análise
7.
Nutr Metab Cardiovasc Dis ; 34(2): 404-417, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37973425

RESUMO

BACKGROUND AND AIM: Circulating biomarkers provide potential diagnostic or prognostic information on disease presentation, progression or both. Early detection of circulating risk biomarkers is critical for non-alcoholic fatty liver disease (NAFLD) prevention. We aimed to systematically assess the potential causal relationship of genetically predicted 60 circulatory biomarkers with NAFLD using a two-sample Mendelian randomization (MR) design. METHODS AND RESULTS: We extracted instrumental variables for 60 circulating biomarkers, and obtained genome-wide association data for NAFLD from 3 sources [(including Anstee, FinnGen and UK Biobank (N ranges: 19264-377988)] among individuals of European ancestry. Our primary method was inverse-variance weighted (IVW) MR, with a series of additional and sensitivity analyses to test the hypothesis of MR. MR results showed that genetically predicted higher density lipoprotein-cholesterol (odds ratio (OR) = 0.86, 95% confidence interval (CI): 0.77-0.96) and vitamin D (OR = 0.39, 95% CI: 0.19-0.78) levels decreased the risk of NAFLD, whereas genetically predicted higher alanine (OR = 1.68, 95% CI: 1.21-2.33), histidine (OR = 1.21, 95% CI: 1.00-1.46), lactate (OR = 2.64, 95% CI: 1.09-6.39), triglycerides (OR = 1.16, 95% CI: 1.05-1.13), ferritin (OR = 1.17, 95% CI: 1.01-1.37), serum iron (OR = 1.23, 95% CI: 1.07-1.41) and transferrin saturation (OR = 1.16, 95% CI: 1.05-1.29), component 4 (OR = 1.10, 95% CI: 1.01-1.20), interleukin-1 receptor antagonist (OR = 1.12, 95% CI: 1.04-1.21) and interleukin-6 (OR = 1.62, 95% CI: 1.14-2.30) levels increased the risk of NAFLD. CONCLUSIONS: The findings might aid in elucidating the underlying processes of these causal relationships and provide strong evidence for focusing on high-risk populations and the therapeutic management of specific biomarkers.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Biomarcadores , Ácido Láctico
8.
Int J Sport Nutr Exerc Metab ; 34(4): 189-198, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604602

RESUMO

Whey protein ingestion during recovery from exercise increases myofibrillar but not muscle connective protein synthesis rates. It has been speculated that whey protein does not provide sufficient glycine to maximize postexercise muscle connective protein synthesis rates. In the present study, we assessed the impact of coingesting different amounts of collagen with whey protein as a nutritional strategy to increase plasma glycine availability during recovery from exercise. In a randomized, double-blind, crossover design, 14 recreationally active men (age: 26 ± 5 years; body mass index: 23.8 ± 2.1 kg·m-2) ingested in total 30 g protein, provided as whey protein with 0 g (WHEY), 5 g (WC05); 10 g (WC10), and 15 g (WC15) of collagen protein immediately after a single bout of resistance exercise. Blood samples were collected frequently over 6 hr of postexercise recovery to assess postprandial plasma amino acid kinetics and availability. Protein ingestion strongly increased plasma amino acid concentrations (p < .001) with no differences in plasma total amino acid availability between treatments (p > .05). The postprandial rise in plasma leucine and essential amino acid availability was greater in WHEY compared with the WC10 and WC15 treatments (p < .05). Plasma glycine and nonessential amino acid concentrations declined following whey protein ingestion but increased following collagen coingestion (p < .05). Postprandial plasma glycine availability averaged -8.9 ± 5.8, 9.2 ± 3.7, 23.1 ± 6.5, and 39.8 ± 11.0 mmol·360 min/L in WHEY, WC05, WC10, and WC15, respectively (incremental area under curve values, p < .05). Coingestion of a small amount of collagen (5 g) with whey protein (25 g) is sufficient to prevent the decline in plasma glycine availability during recovery from lower body resistance-type exercise in recreationally active men.


Assuntos
Colágeno , Estudos Cross-Over , Glicina , Proteínas do Soro do Leite , Humanos , Proteínas do Soro do Leite/administração & dosagem , Masculino , Adulto , Glicina/sangue , Glicina/administração & dosagem , Método Duplo-Cego , Adulto Jovem , Período Pós-Prandial , Exercício Físico/fisiologia , Treinamento Resistido , Fenômenos Fisiológicos da Nutrição Esportiva , Aminoácidos/sangue , Aminoácidos/administração & dosagem , Músculo Esquelético/metabolismo
9.
Yale J Biol Med ; 97(1): 85-92, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38559455

RESUMO

Pregnancy causes physiological changes that support the growing fetus and get the mother ready for labor and delivery. Some of these modifications affect biochemical levels; they are normally stable, while others could imitate symptoms of illness. It is critical to distinguish between pathology associated with disease and typical physiological changes. This review article focuses on the significant changes that occur throughout a typical pregnancy.


Assuntos
Gravidez , Feminino , Humanos , Gravidez/fisiologia
10.
J Nutr ; 153(1): 66-75, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36913480

RESUMO

BACKGROUND: Ingestion of protein concentrates or isolates increases muscle protein synthesis rates in young and older adults. There is far less information available on the anabolic response following the ingestion of dairy wholefoods, which are commonly consumed in a normal diet. OBJECTIVES: This study investigates whether ingestion of 30 g protein provided as quark increases muscle protein synthesis rates at rest and whether muscle protein synthesis rates are further increased after resistance exercise in young and older adult males. METHODS: In this parallel-group intervention trial, 14 young (18-35 y) and 15 older (65-85 y) adult males ingested 30 g protein provided as quark after a single-legged bout of resistance exercise on leg press and leg extension machines. Primed, continuous intravenous L-[ring-13C6]-phenylalanine infusions were combined with the collection of blood and muscle tissue samples to assess postabsorptive and 4-h postprandial muscle protein synthesis rates at rest and during recovery from exercise. Data represent means ± SDs; η2 was used to measure the effect size. RESULTS: Plasma total amino acid and leucine concentrations increased after quark ingestion in both groups (both time: P < 0.001; η2 > 0.8), with no differences between groups (time × group: P = 0.127 and P = 0.172, respectively; η2<0.1). Muscle protein synthesis rates increased following quark ingestion at rest in both young (from 0.030 ± 0.011 to 0.051 ± 0.011 %·h-1) and older adult males (from 0.036 ± 0.011 to 0.062 ± 0.013 %·h-1), with a further increase in the exercised leg (to 0.071 ± 0.023 %·h-1 and to 0.078 ± 0.019 %·h-1, respectively; condition: P < 0.001; η2 = 0.716), with no differences between groups (condition × group: P = 0.747; η2 = 0.011). CONCLUSIONS: Quark ingestion increases muscle protein synthesis rates at rest with a further increase following exercise in both young and older adult males. The postprandial muscle protein synthetic response following quark ingestion does not differ between healthy young and older adult males when an ample amount of protein is ingested. This trial was registered at the Dutch Trial register, which is accessible via trialsearch.who.int www.trialregister.nl as NL8403.


Assuntos
Proteínas Musculares , Treinamento Resistido , Masculino , Humanos , Proteínas Musculares/metabolismo , Método Duplo-Cego , Leucina/metabolismo , Músculo Esquelético/metabolismo , Ingestão de Alimentos , Proteínas Alimentares/metabolismo , Período Pós-Prandial
11.
Amino Acids ; 55(10): 1223-1246, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37646877

RESUMO

Cancer malignancies may broadly be described as heterogeneous disorders manifested by uncontrolled cellular growth/division and proliferation. Tumor cells utilize metabolic reprogramming to accomplish the upregulated nutritional requirements for sustaining their uncontrolled growth, proliferation, and survival. Metabolic reprogramming also called altered or dysregulated metabolism undergoes modification in normal metabolic pathways for anabolic precursor's generation that serves to continue biomass formation that sustains the growth, proliferation, and survival of carcinogenic cells under a nutrition-deprived microenvironment. A wide range of dysregulated/altered metabolic pathways encompassing different metabolic regulators have been described; however, the current review is focused to explain deeply the metabolic pathways modifications inducing upregulation of proteins/amino acids metabolism. The essential modification of various metabolic cycles with their consequent outcomes meanwhile explored promising therapeutic targets playing a pivotal role in metabolic regulation and is successfully employed for effective target-specific cancer treatment. The current review is aimed to understand the metabolic reprogramming of different proteins/amino acids involved in tumor progression along with potential therapeutic perspective elucidating targeted cancer therapy via these targets.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Redes e Vias Metabólicas , Aminoácidos/metabolismo , Microambiente Tumoral
12.
Br J Nutr ; 130(4): 588-603, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-36408747

RESUMO

Hormone-sensitive lipase (HSL) is one of the rate-determining enzymes in the hydrolysis of TAG, playing a crucial role in lipid metabolism. However, the role of HSL-mediated lipolysis in systemic nutrient homoeostasis has not been intensively understood. Therefore, we used CRISPR/Cas9 technique and Hsl inhibitor (HSL-IN-1) to establish hsla-deficient (hsla-/-) and Hsl-inhibited zebrafish models, respectively. As a result, the hsla-/- zebrafish showed retarded growth and reduced oxygen consumption rate, accompanied with higher mRNA expression of the genes related to inflammation and apoptosis in liver and muscle. Furthermore, hsla-/- and HSL-IN-1-treated zebrafish both exhibited severe fat deposition, whereas their expressions of the genes related to lipolysis and fatty acid oxidation were markedly reduced. The TLC results also showed that the dysfunction of Hsl changed the whole-body lipid profile, including increasing the content of TG and decreasing the proportion of phospholipids. In addition, the systemic metabolic pattern was remodelled in hsla-/- and HSL-IN-1-treated zebrafish. The dysfunction of Hsl lowered the glycogen content in liver and muscle and enhanced the utilisation of glucose plus the expressions of glucose transporter and glycolysis genes. Besides, the whole-body protein content had significantly decreased in the hsla-/- and HSL-IN-1-treated zebrafish, accompanied with the lower activation of the mTOR pathway and enhanced protein and amino acid catabolism. Taken together, Hsl plays an essential role in energy homoeostasis, and its dysfunction would cause the disturbance of lipid catabolism but enhanced breakdown of glycogen and protein for energy compensation.


Assuntos
Esterol Esterase , Peixe-Zebra , Animais , Esterol Esterase/genética , Esterol Esterase/metabolismo , Peixe-Zebra/metabolismo , Lipase/metabolismo , Lipólise/genética , Metabolismo dos Lipídeos/genética , Lipídeos , Nutrientes
13.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175747

RESUMO

OsMADS1 plays a vital role in regulating floret development and grain shape, but whether it regulates rice grain quality still remains largely unknown. Therefore, we used comprehensive molecular genetics, plant biotechnology, and functional omics approaches, including phenotyping, mapping-by-sequencing, target gene seed-specific RNAi, transgenic experiments, and transcriptomic profiling to answer this biological and molecular question. Here, we report the characterization of the 'Oat-like rice' mutant, with poor grain quality, including chalky endosperms, abnormal morphology and loose arrangement of starch granules, and lower starch content but higher protein content in grains. The poor grain quality of Oat-like rice was found to be caused by the mutated OsMADS1Olr allele through mapping-by-sequencing analysis and transgenic experiments. OsMADS1 protein is highly expressed in florets and developing seeds. Both OsMADS1-eGFP and OsMADS1Olr-eGFP fusion proteins are localized in the nucleus. Moreover, seed-specific RNAi of OsMADS1 also caused decreased grain quality in transgenic lines, such as the Oat-like rice. Further transcriptomic profiling between Oat-like rice and Nipponbare grains revealed that OsMADS1 regulates gene expressions and regulatory networks of starch and storage protein metabolisms in rice grains, hereafter regulating rice quality. In conclusion, our results not only reveal the crucial role and preliminary mechanism of OsMADS1 in regulating rice grain quality but also highlight the application potentials of OsMADS1 and the target gene seed-specific RNAi system in improving rice grain quality by molecular breeding.


Assuntos
Oryza , Amido , Amido/genética , Amido/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Endosperma/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas
14.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958920

RESUMO

In recent years, skin aging has received increasing attention. Many factors affect skin aging, and research has shown that metabolism plays a vital role in skin aging, but there needs to be a more systematic review. This article reviews the interaction between skin metabolism and aging from the perspectives of glucose, protein, and lipid metabolism and explores relevant strategies for skin metabolism regulation. We found that skin aging affects the metabolism of three major substances, which are glucose, protein, and lipids, and the metabolism of the three major substances in the skin also affects the process of skin aging. Some drugs or compounds can regulate the metabolic disorders mentioned above to exert anti-aging effects. Currently, there are a variety of products, but most of them focus on improving skin collagen levels. Skin aging is closely related to metabolism, and they interact with each other. Regulating specific metabolic disorders in the skin is an important anti-aging strategy. Research and development have focused on improving collagen levels, while the regulation of other skin glycosylation and lipid disorders including key membrane or cytoskeleton proteins is relatively rare. Further research and development are expected.


Assuntos
Doenças Metabólicas , Envelhecimento da Pele , Humanos , Envelhecimento/metabolismo , Metabolismo dos Lipídeos , Colágeno/metabolismo , Glucose
15.
Am J Physiol Cell Physiol ; 322(5): C1022-C1035, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35417269

RESUMO

Creatine (Cr) is beneficial for increasing muscle mass and preventing muscle atrophy via involving in energy metabolism through the Cr and phosphocreatine (PCr) system. This study aimed to evaluate the supplemental effect of Cr on protein metabolism under normal and starvation conditions. The primary myoblasts were obtained from the breast muscle of chicks. The mammalian target of rapamycin (mTOR)/P70S6 kinase (P70S6K), ubiquitin-proteasome (UP) pathways, and mitochondrial function of myotubes were evaluated at normal or starvation state and with or without glucose supplementation. Under normal condition, Cr supplementation enhanced protein synthesis rate as well as upregulated the total and phosphorylated P70S6K expressions. Cr had little influence on protein catabolism and mitochondrial function. In a starvation state, however, Cr alleviated myotube atrophy and enhanced protein accretion by inhibiting Atrogin1 and myostatin (MSTN) expression. Furthermore, Cr treatment upregulated the transcriptional coactivators peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression and decreased reactive oxygen species (ROS) accumulation under starvation condition. In the presence of glucose, however, the favorable effect of Cr on protein content and myotube diameter did not occur under starvation condition. The present result indicates that at a normal state, Cr stimulated protein synthesis via the mTOR/P70S6K pathway. In a starvation state, Cr mainly takes a favorable effect on protein accumulation via suppression of the UP pathway and mediated mitochondrial function mainly by serving as an energy supplier. The result highlights the potential clinical application for the modulation of muscle mass under different nutritional conditions.


Assuntos
Creatina , Doenças Musculares , Animais , Galinhas , Creatina/metabolismo , Creatina/uso terapêutico , Metabolismo Energético , Glucose/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Doenças Musculares/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo
16.
Am J Physiol Regul Integr Comp Physiol ; 323(1): R98-R109, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35503523

RESUMO

Migratory birds seasonally increase fat stores and the capacity to use fat to fuel long-distance migratory flights. However, lean mass loss also occurs during migratory flights and, if adaptive, should exhibit seasonal changes in the capacity for protein metabolism. We conducted a photoperiod manipulation using captive white-throated sparrows (Zonotrichia albicollis) to investigate seasonal changes in protein metabolism between the nonmigratory "winter" condition and after exposure to a long-day "spring" photoperiod to stimulate the migratory condition. After photostimulation, birds in the migratory condition rapidly increased fat mass and activity of fat catabolism enzymes. Meanwhile, total lean mass did not change, but birds increased the activity of protein catabolism enzymes and lost more water and lean mass during water-restricted metabolic testing. These data suggest that more protein may be catabolized during migratory seasons, corresponding with more water loss. Counter to predictions, birds in the migratory condition also showed an approximately 30-fold increase in muscle expression of sarcolipin, which binds to sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and uncouples Ca2+ transport from ATP hydrolysis. Our documented changes to protein catabolism enzymes and whole animal lean mass dynamics may indicate that protein breakdown or increased protein turnover is adaptive during migration in songbirds.


Assuntos
Pardais , Migração Animal/fisiologia , Animais , Fotoperíodo , Estações do Ano , Pardais/fisiologia , Água/metabolismo
17.
J Nutr ; 152(4): 1022-1030, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020907

RESUMO

BACKGROUND: Protein ingestion increases muscle protein synthesis rates. The food matrix in which protein is provided can strongly modulate the postprandial muscle protein synthetic response. So far, the muscle protein synthetic response to the ingestion of whole foods remains largely unexplored. OBJECTIVES: To compare the impact of ingesting 30 g protein provided as milk protein or cheese on postprandial plasma amino acid concentrations and muscle protein synthesis rates at rest and during recovery from exercise in vivo in young males. METHODS: In this randomized, parallel-group intervention trial, 20 healthy males aged 18-35 y ingested 30 g protein provided as cheese or milk protein concentrate following a single-legged resistance-type exercise session consisting of 12 sets of leg press and leg extension exercises. Primed, continuous intravenous L-[ring-13C6]-phenylalanine infusions were combined with the collection of blood and muscle tissue samples to assess postabsorptive and 4-h postprandial muscle protein synthesis rates at rest and during recovery from exercise. Data were analyzed using repeated measures Time × Group (× Leg) ANOVA. RESULTS: Plasma total amino acid concentrations increased after protein ingestion (Time: P < 0.001), with 38% higher peak concentrations following milk protein than cheese ingestion (Time × Group: P < 0.001). Muscle protein synthesis rates increased following both cheese and milk protein ingestion from 0.037 ± 0.014 to 0.055 ± 0.018%·h-1 and 0.034 ± 0.008 to 0.056 ± 0.010%·h-1 at rest and even more following exercise from 0.031 ± 0.010 to 0.067 ± 0.013%·h-1 and 0.030 ± 0.008 to 0.063 ± 0.010%·h-1, respectively (Time: all P < 0.05; Time × Leg: P = 0.002), with no differences between cheese and milk protein ingestion (Time × Group: both P > 0.05). CONCLUSION: Cheese ingestion increases muscle protein synthesis rates both at rest and during recovery from exercise. The postprandial muscle protein synthetic response to the ingestion of cheese or milk protein does not differ when 30 g protein is ingested at rest or during recovery from exercise in healthy, young males.


Assuntos
Queijo , Proteínas Musculares , Adolescente , Adulto , Proteínas Alimentares/metabolismo , Ingestão de Alimentos , Humanos , Masculino , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Período Pós-Prandial , Adulto Jovem
18.
J Nutr ; 152(4): 1022-1030, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-36967159

RESUMO

BACKGROUND: Protein ingestion increases muscle protein synthesis rates. The food matrix in which protein is provided can strongly modulate the postprandial muscle protein synthetic response. So far, the muscle protein synthetic response to the ingestion of whole foods remains largely unexplored. OBJECTIVES: To compare the impact of ingesting 30 g protein provided as milk protein or cheese on postprandial plasma amino acid concentrations and muscle protein synthesis rates at rest and during recovery from exercise in vivo in young males. METHODS: In this randomized, parallel-group intervention trial, 20 healthy males aged 18-35 y ingested 30 g protein provided as cheese or milk protein concentrate following a single-legged resistance-type exercise session consisting of 12 sets of leg press and leg extension exercises. Primed, continuous intravenous L-[ring-13C6]-phenylalanine infusions were combined with the collection of blood and muscle tissue samples to assess postabsorptive and 4-h postprandial muscle protein synthesis rates at rest and during recovery from exercise. Data were analyzed using repeated measures Time × Group (× Leg) ANOVA. RESULTS: Plasma total amino acid concentrations increased after protein ingestion (Time: P < 0.001), with 38% higher peak concentrations following milk protein than cheese ingestion (Time × Group: P < 0.001). Muscle protein synthesis rates increased following both cheese and milk protein ingestion from 0.037 ± 0.014 to 0.055 ± 0.018%·h-1 and 0.034 ± 0.008 to 0.056 ± 0.010%·h-1 at rest and even more following exercise from 0.031 ± 0.010 to 0.067 ± 0.013%·h-1 and 0.030 ± 0.008 to 0.063 ± 0.010%·h-1, respectively (Time: all P < 0.05; Time × Leg: P = 0.002), with no differences between cheese and milk protein ingestion (Time × Group: both P > 0.05). CONCLUSION: Cheese ingestion increases muscle protein synthesis rates both at rest and during recovery from exercise. The postprandial muscle protein synthetic response to the ingestion of cheese or milk protein does not differ when 30 g protein is ingested at rest or during recovery from exercise in healthy, young males.


Assuntos
Queijo , Proteínas Musculares , Masculino , Humanos , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Fenilalanina/metabolismo , Proteínas do Leite/metabolismo , Método Duplo-Cego , Ingestão de Alimentos , Período Pós-Prandial
19.
Amino Acids ; 54(7): 977-988, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35353249

RESUMO

A considerable number of studies have reported that maternal protein restriction may disturb fetal growth and organ development due to a lower availability of amino acids. Leucine, one of branched-chain amino acid (BCAA) promotes protein synthesis through mechanistic target of rapamycin signaling. Here, we investigated the effects of BCAA supplementation in the dams fed a low-protein diet on serum and hepatic biochemical parameters of protein metabolism of dams and their offspring. Female ICR mice were fed a control (20% casein), a low-protein (10% casein), a low-protein with 2% BCAAs or a low-protein with 2% alanine diet for 2 weeks before mating and then throughout pregnancy and lactation. Alanine was used as an amino nitrogen control for the BCAA. Dams and their male offspring were sacrificed at postnatal day 21. There were no changes in body weight and fat mass in low-protein fed dams; however, BCAA supplementation significantly increased fat mass and serum leptin levels. Low-protein diet consumption reduced maternal protein synthesis based on biochemical analysis of serum albumin and hepatic protein levels and immunoblotting of S6 protein, which were increased by BCAA and alanine supplementation. Offspring from dams fed a low-protein diet exhibited lower body and organ weights. Body weight and hepatic protein levels of the offspring were increased by alanine supplementation. However, the decreased serum biochemical parameters, including glucose, triglyceride, total protein and albumin levels in the low-protein offspring group were not changed in response to BCAA or alanine supplementation. A reduced density of the hepatic vessel system in the offspring from dams fed a low-protein diet was restored in the offspring from dams fed either BCAA and alanine-supplemented diet. These results suggest that supplementation of amino nitrogen per se may be responsible for inducing hepatic protein synthesis in the dams fed a low-protein diet and alleviating the distorted growth and liver development of their offspring.


Assuntos
Caseínas , Dieta com Restrição de Proteínas , Alanina/metabolismo , Alanina/farmacologia , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Biomarcadores/metabolismo , Peso Corporal , Caseínas/farmacologia , Dieta Hiperlipídica , Suplementos Nutricionais , Feminino , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Gravidez
20.
Fish Shellfish Immunol ; 127: 703-714, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35817364

RESUMO

To study the effects of dietary methionine on growth performance, immunity, antioxidant capacity, protein metabolism, inflammatory response and apoptosis factors in Chinese mitten crabs (Eriocheir sinensis). Five diets with different methionine levels (0.63%, 0.85%, 1.06%, 1.25% and 1.47%) were fed to E. sinensis for 8 weeks. Results showed that in the 1.25% Met group, both growth performance and feed utilization were significantly increased. The crude protein content of crab muscle in the 1.06% and 1.25% Met groups was significantly higher than that in the control group. The immune and antioxidant enzyme activities, as well as gene expression levels of anti-lipopolysaccharide factor 1 (ALF1), Crustin-1, prophenoloxidase (proPO), cap 'n' collar isoform C (CncC) in 1.25% Met group were significantly higher than other groups. The activities of adenosine deaminase (ADA) and glutamate transaminase (GPT) in serum decreased first and then increased with the increase of methionine content, while the changes of ADA and GPT in hepatopancreas increased first and then decreased. 1.25% Met group exhibited significantly increased levels of GOT, GPT, and ADA compared to the control group. 1.25% Met diet group significantly up-regulated protein synthesis and anti-apoptotic factors, and significantly down-regulated inflammatory and pro-apoptotic factors in hepatopancreas. At 1.25% in the diet, methionine was found to boost E. sinensis growth, muscle protein deposition and immunity, as well as its antioxidant capacity. Combined with the above results, based on the expression of factors involved in the mammalian target of rapamycin (mTOR) signaling pathway and the mitogen-activated protein kinase (MAPK) signaling pathway, it is proved that methionine can not only promote protein metabolism, improve feed utilization, but also alleviate the inflammatory response and apoptosis caused by oxidative stress in the body.


Assuntos
Antioxidantes , Braquiúros , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Braquiúros/metabolismo , China , Dieta , Suplementos Nutricionais , Imunidade Inata , Mamíferos/metabolismo , Metionina/farmacologia , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA