Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Proteome Res ; 22(2): 520-525, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36475762

RESUMO

Here, we describe the implementation of the fast proteomics search engine MSFragger as a processing node in the widely used Proteome Discoverer (PD) software platform. PeptideProphet (via the Philosopher tool kit) is also implemented as an additional PD node to allow validation of MSFragger open (mass-tolerant) search results. These two nodes, along with the existing Percolator validation module, allow users to employ different search strategies and conveniently inspect search results through PD. Our results have demonstrated the improved numbers of PSMs, peptides, and proteins identified by MSFragger coupled with Percolator and significantly faster search speed compared to the conventional SEQUEST/Percolator PD workflows. The MSFragger-PD node is available at https://github.com/nesvilab/PD-Nodes/releases/.


Assuntos
Proteoma , Ferramenta de Busca , Ferramenta de Busca/métodos , Proteoma/metabolismo , Algoritmos , Espectrometria de Massas em Tandem/métodos , Software , Bases de Dados de Proteínas
2.
J Proteome Res ; 21(12): 3007-3015, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36315902

RESUMO

Isobaric labeling-based proteomics is widely applied in deep proteome quantification. Among the platforms for isobaric labeled proteomic data analysis, the commercial software Proteome Discoverer (PD) is widely used, incorporating the search engine CHIMERYS, while FragPipe (FP) is relatively new, free for noncommercial purposes, and integrates the engine MSFragger. Here, we compared PD and FP over three public proteomic data sets labeled using 6plex, 10plex, and 16plex tandem mass tags. Our results showed the protein abundances generated by the two software are highly correlated. PD quantified more proteins (10.02%, 15.44%, 8.19%) than FP with comparable NA ratios (0.00% vs. 0.00%, 0.85% vs. 0.38%, and 11.74% vs. 10.52%) in the three data sets. Using the 16plex data set, PD and FP outputs showed high consistency in quantifying technical replicates, batch effects, and functional enrichment in differentially expressed proteins. However, FP saved 93.93%, 96.65%, and 96.41% of processing time compared to PD for analyzing the three data sets, respectively. In conclusion, while PD is a well-maintained commercial software integrating various additional functions and can quantify more proteins, FP is freely available and achieves similar output with a shorter computational time. Our results will guide users in choosing the most suitable quantification software for their needs.


Assuntos
Proteoma , Proteômica , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Software
3.
J Proteome Res ; 19(3): 1338-1345, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31975593

RESUMO

Phosphorylation-driven cell signaling governs most biological functions and is widely studied using mass-spectrometry-based phosphoproteomics. Identifying the peptides and localizing the phosphorylation sites within them from the raw data is challenging and can be performed by several algorithms that return scores that are not directly comparable. This increases the heterogeneity among published phosphoproteomics data sets and prevents their direct integration. Here we compare 22 pipelines implemented in the main software tools used for bottom-up phosphoproteomics analysis (MaxQuant, Proteome Discoverer, PeptideShaker). We test six search engines (Andromeda, Comet, Mascot, MS Amanda, SequestHT, and X!Tandem) in combination with several localization scoring algorithms (delta score, D-score, PTM-score, phosphoRS, and Ascore). We show that these follow very different score distributions, which can lead to different false localization rates for the same threshold. We provide a strategy to discriminate correctly from incorrectly localized phosphorylation sites in a consistent manner across the tested pipelines. The results presented here can help users choose the most appropriate pipeline and cutoffs for their phosphoproteomics analysis.


Assuntos
Peptídeos , Proteômica , Algoritmos , Espectrometria de Massas , Fosforilação , Software
4.
Mar Drugs ; 18(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668814

RESUMO

Ascidians are marine invertebrates associated with diverse microbial communities, embedded in their tunic, conferring special ecological and biotechnological relevance to these model organisms used in evolutionary and developmental studies. Next-generation sequencing tools have increased the knowledge of ascidians' associated organisms and their products, but proteomic studies are still scarce. Hence, we explored the tunic of three ascidian species using a shotgun proteomics approach. Proteins extracted from the tunic of Ciona sp., Molgula sp., and Microcosmus sp. were processed using a nano LC-MS/MS system (Ultimate 3000 liquid chromatography system coupled to a Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometer). Raw data was searched against UniProtKB - the Universal Protein Resource Knowledgebase (Bacteria and Metazoa section) using Proteome Discoverer software. The resulting proteins were merged with a non-redundant Antimicrobial Peptides (AMPs) database and analysed with MaxQuant freeware. Overall, 337 metazoan and 106 bacterial proteins were identified being mainly involved in basal metabolism, cytoskeletal and catalytic functions. 37 AMPs were identified, most of them attributed to eukaryotic origin apart from bacteriocins. These results and the presence of "Biosynthesis of antibiotics" as one of the most highlighted pathways revealed the tunic as a very active tissue in terms of bioactive compounds production, giving insights on the interactions between host and associated organisms. Although the present work constitutes an exploratory study, the approach employed revealed high potential for high-throughput characterization and biodiscovery of the ascidians' tunic and its microbiome.


Assuntos
Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteoma , Proteômica , Urocordados/metabolismo , Animais , Cromatografia Líquida , Bases de Dados de Proteínas , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno , Microbiota , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Urocordados/microbiologia
5.
J Proteome Res ; 18(4): 1477-1485, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30859831

RESUMO

Label-free quantification has become a common-practice in many mass spectrometry-based proteomics experiments. In recent years, we and others have shown that spectral clustering can considerably improve the analysis of (primarily large-scale) proteomics data sets. Here we show that spectral clustering can be used to infer additional peptide-spectrum matches and improve the quality of label-free quantitative proteomics data in data sets also containing only tens of MS runs. We analyzed four well-known public benchmark data sets that represent different experimental settings using spectral counting and peak intensity based label-free quantification. In both approaches, the additionally inferred peptide-spectrum matches through our spectra-cluster algorithm improved the detectability of low abundant proteins while increasing the accuracy of the derived quantitative data, without increasing the data sets' noise. Additionally, we developed a Proteome Discoverer node for our spectra-cluster algorithm which allows anyone to rebuild our proposed pipeline using the free version of Proteome Discoverer.


Assuntos
Análise por Conglomerados , Espectrometria de Massas/métodos , Proteoma/análise , Proteômica/métodos , Algoritmos , Bases de Dados de Proteínas , Humanos
6.
Cell Commun Signal ; 17(1): 66, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208443

RESUMO

Modern quantitative mass spectrometry (MS)-based proteomics enables researchers to unravel signaling networks by monitoring proteome-wide cellular responses to different stimuli. MS-based analysis of signaling systems usually requires an integration of multiple quantitative MS experiments, which remains challenging, given that the overlap between these datasets is not necessarily comprehensive. In a previous study we analyzed the impact of the yeast mitogen-activated protein kinase (MAPK) Hog1 on the hyperosmotic stress-affected phosphorylome. Using a combination of a series of hyperosmotic stress and kinase inhibition experiments, we identified a broad range of direct and indirect substrates of the MAPK. Here we re-evaluate this extensive MS dataset and demonstrate that a combined analysis based on two software packages, MaxQuant and Proteome Discoverer, increases the coverage of Hog1-target proteins by 30%. Using protein-protein proximity assays we show that the majority of new targets gained by this analysis are indeed Hog1-interactors. Additionally, kinetic profiles indicate differential trends of Hog1-dependent versus Hog1-independent phosphorylation sites. Our findings highlight a previously unrecognized interconnection between Hog1 signaling and the RAM signaling network, as well as sphingolipid homeostasis.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Software , Células HeLa , Humanos , Fosforilação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
7.
Clin Proteomics ; 11(1): 29, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25097467

RESUMO

BACKGROUND: The vitreous humor is a transparent, gelatinous mass whose main constituent is water. It plays an important role in providing metabolic nutrient requirements of the lens, coordinating eye growth and providing support to the retina. It is in close proximity to the retina and reflects many of the changes occurring in this tissue. The biochemical changes occurring in the vitreous could provide a better understanding about the pathophysiological processes that occur in vitreoretinopathy. In this study, we investigated the proteome of normal human vitreous humor using high resolution Fourier transform mass spectrometry. RESULTS: The vitreous humor was subjected to multiple fractionation techniques followed by LC-MS/MS analysis. We identified 1,205 proteins, 682 of which have not been described previously in the vitreous humor. Most proteins were localized to the extracellular space (24%), cytoplasm (20%) or plasma membrane (14%). Classification based on molecular function showed that 27% had catalytic activity, 10% structural activity, 10% binding activity, 4% cell and 4% transporter activity. Categorization for biological processes showed 28% participate in metabolism, 20% in cell communication and 13% in cell growth. The data have been deposited to the ProteomeXchange with identifier PXD000957. CONCLUSION: This large catalog of vitreous proteins should facilitate biomedical research into pathological conditions of the eye including diabetic retinopathy, retinal detachment and cataract.

8.
J Pharm Biomed Anal ; 243: 116094, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479303

RESUMO

BACKGROUND: Tandem mass spectrometry (MS/MS) can provide direct and accurate sequence characterization of synthetic peptide drugs, and peptide drug products including side chain modifications in the Peptide drugs. This article explains a step-by-step guide to developing a high-throughput method using high resolution mass spectrometry for characterization of Calcitonin Salmon injection containing high proportion of UV-active excipients. METHODS: The major challenge in the method development of Amino acid sequencing and Peptide mapping was presence of phenol in drug product. Phenol is a UV-active excipient and reacts with both Dithiothreitol (DTT) and Trypsin. Hence Calcitonin Salmon was extracted from the Calcitonin Salmon injection using solid phase extraction after the extraction, Amino acid sequencing and peptide mapping study was performed. Upon incubation of Calcitonin Salmon with Trypsin and DTT, digested fragments were generated which were separated by mass compatible reverse phase chromatography and the molecular mass of each fragment was determined using HRMS. RESULTS: A reverse phase chromatographic method was developed using UHPLC-HRMS for the determination of direct mass, peptide mapping and to determine the amino acid sequencing in the Calcitonin Salmon injection. The method was found Specific and fragments after trypsin digest are well resolved from each other and the molecular mass of each fragment was determined using HRMS. Sequencing was performed using automated identification of b and y ions annotation and identifications based on MS/MS spectra using Biopharma finder and Proteome discoverer software. CONCLUSION: Using this approach 100% protein coverage was obtained and protein was identified as Calcitonin Salmon and the observed masses of tryptic digest of peptide was found similar with theoretical masses. The method can be used for both UV and MS based Peptide mapping and whereas the UV based peptide mapping method can be used as identification test for Calcitonin Salmon drug substance and drug product in quality control.


Assuntos
Calcitonina , Peptídeos , Espectrometria de Massas em Tandem , Mapeamento de Peptídeos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Tripsina/metabolismo , Análise de Sequência de Proteína , Proteoma , Fenóis
9.
Methods Mol Biol ; 2477: 275-292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35524123

RESUMO

Simple light isotope metabolic labeling (bSLIM) is an innovative method to accurately quantify differences in protein abundance at the proteome level in standard bottom-up experiments. The quantification process requires computation of the ratio of intensity of several isotopologs in the isotopic cluster of every identified peptide. Thus, appropriate bioinformatic workflows are required to extract the signals from the instrument files and calculate the required ratio to infer peptide/protein abundance. In a previous study (Sénécaut et al., J Proteome Res 20:1476-1487, 2021), we developed original open-source workflows based on OpenMS nodes implemented in a KNIME working environment. Here, we extend the use of the bSLIM labeling strategy in quantitative proteomics by presenting an alternative procedure to extract isotopolog intensities and process them by taking advantage of new functionalities integrated into the Minora node of Proteome Discoverer 2.4 software. We also present a graphical strategy to evaluate the statistical robustness of protein quantification scores and calculate the associated false discovery rates (FDR). We validated these approaches in a case study in which we compared the differences between the proteomes of two closely related yeast strains.


Assuntos
Proteoma , Proteômica , Marcação por Isótopo/métodos , Peptídeos/metabolismo , Proteômica/métodos , Saccharomyces cerevisiae/metabolismo
10.
Methods Mol Biol ; 2358: 179-187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270055

RESUMO

Both the phosphorylation and dephosphorylation of plant proteins is involved in multiple biological processes, especially in regard to signal transduction. The identification of phosphopeptides from MS (mass spectrometry)-based methods and their subsequent quantification play an important role in plant phosphoproteomics analysis. Phosphopeptide(s) identification and label-free quantification can determine dynamic changes of phosphorylation events in plants. Both MaxQuant and Proteome Discoverer are professional software tools used to identify and quantify large-scale MS-based phosphoproteomic data. This chapter gives a detailed workflow of MaxQuant and Proteome Discoverer software to analyze large amounts of phosphoproteomic-related MS data for the identification and quantification of label-free plant phosphopeptides.


Assuntos
Software , Espectrometria de Massas , Fosfopeptídeos , Fosfoproteínas , Proteoma , Proteômica
11.
Bioimpacts ; 10(2): 123-135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32363156

RESUMO

Introduction: Serratia marcescens, an opportunistic human pathogen, is reported as an important cause of nosocomial infection and outbreaks. Although the genome of S. marcescens (ATCC 13880) was completely sequenced by 2014, there are no studies on the proteomic profile of the organism. The objective of the present study is to analyze the protein profile of S. marcescens (ATCC 13880) using a high resolution mass spectrometry (MS). Methods: Serratia marcescens ATCC 13880 strain was grown in Luria-Bertani broth and the protein extracted was subjected to trypsin digestion, followed by basic reverse phase liquid chromatography fractionation. The peptide fractions were then analysed using Orbitrap Fusion Mass Spectrometry and the raw MS data were processed in Proteome Discoverer software. Results: The proteomic analysis identified 15 009 unique peptides mapping to 2541 unique protein groups, which corresponds to approximately 54% of the computationally predicted protein-coding genes. Bioinformatic analysis of these identified proteins showed their involvement in biological processes such as cell wall organization, chaperone-mediated protein folding and ATP binding. Pathway analysis revealed that some of these proteins are associated with bacterial chemotaxis and beta-lactam resistance pathway. Conclusion: To the best of our knowledge, this is the first high-throughput proteomics study of S. marcescens (ATCC 13880). These novel observations provide a crucial baseline molecular profile of the S. marcescens proteome which will prove to be helpful for the future research in understanding the host-pathogen interactions during infection, elucidating the mechanism of multidrug resistance, and developing novel diagnostic markers or vaccine for the disease.

12.
Methods Mol Biol ; 1944: 115-126, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840238

RESUMO

Global characterization of protein N termini provides valuable information on proteome dynamics and diversity in health and disease. Driven by the progress in mass spectrometry-based proteomics, novel approaches for the dedicated investigation of protein N termini and protease substrates have been recently developed. Terminal amine isotopic labeling of substrates (TAILS) is a quantitative proteomics approach suitable for high-throughput and system-wide profiling of protein N termini in complex biological matrices. TAILS employs isotopic labeling of primary amines of intact proteins in combination with an amine-reactive high molecular weight polymer (HPG-ALD) for depletion of internal tryptic peptides and high enrichment of protein N termini by negative selection. Thereby, TAILS allows simultaneous identification of the natural N termini, protease-generated neo-N termini, and endogenously modified (e.g., acetylated) N termini. In this chapter, we provide a protocol for tandem mass tag (TMT)-TAILS analysis and further discuss specific considerations regarding N-terminome data interpretation using Proteome Discoverer™ software.


Assuntos
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Marcação por Isótopo/métodos , Proteoma/metabolismo , Serina Endopeptidases/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Células Cultivadas , Fibroblastos/citologia , Camundongos , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteólise , Especificidade por Substrato
13.
Methods Mol Biol ; 1719: 223-240, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29476515

RESUMO

Human milk and dairy products are important parts of human nutrition. In addition to supplying nutrients, milk proteins contain fragments-peptides-with important biological functions that are released during processing or digestion. Besides their potential functional relevance, peptides released during processing can be used as markers of ripening stage or product deterioration. Hence, identification and quantification of peptides in milk can be used to assay potential health benefits or product quality. This chapter describes how to extract, identify, and analyze peptides within breast milk, dairy products, and dairy digestive samples. We describe how to analyze extracted peptides with liquid chromatography-mass spectrometry, to use software to identify peptides based on database searching, and to extract peak areas for relative quantification of each peptide. We describe methods for data analysis, including predicting which enzymes are responsible for protein cleavage, identifying the site specificity of protein breakdown, mapping identified peptides to known bioactive peptides, and applying models to predict novel functional peptides.


Assuntos
Cromatografia Líquida/métodos , Laticínios , Proteínas do Leite/análise , Leite Humano/química , Fragmentos de Peptídeos/análise , Controle de Qualidade , Espectrometria de Massas em Tandem/métodos , Animais , Bovinos , Humanos , Proteínas do Leite/química , Fragmentos de Peptídeos/química
14.
J Bioinform ; 1(2): 40-49, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25346941

RESUMO

Proteome Discoverer is one of many tools used for protein database search and peptide to spectrum assignment in mass spectrometry-based proteomics. However, the inadequacy of conversion tools makes it challenging to compare and integrate its results to those of other analytical tools. Here we present M2Lite, an open-source, light-weight, easily pluggable and fast conversion tool. M2Lite converts proteome discoverer derived MSF files to the proteomics community defined standard - the mzIdentML file format. M2Lite's source code is available as open-source at https://bitbucket.org/paiyetan/m2lite/src and its compiled binaries and documentation can be freely downloaded at https://bitbucket.org/paiyetan/m2lite/downloads.

15.
Toxicon ; 75: 148-59, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23792454

RESUMO

Cone snail (genus Conus) venoms provide a rich source of small bioactive peptides known as conopeptides or conotoxins, which are highly interesting in pharmacological studies for new drug discovery. Conus species have evolved expressing a variety of conopeptides, adapted to the biological targets of their own specific preys at their living environments. Therefore, the potential proteomic evaluation of Conus venom components, poorly studied, is of great interest. Early studies supposed about 5% overlap in venom peptides from different Conus species. In this study, we compare using nano-liquid chromatography coupled with electrospray ionisation-mass spectrometry and bioinformatics, the molluscivorous Conus bandanus venom to that of its close-relative Conus marmoreus of the South Central Coast of Vietnam. With this approach, we demonstrate with high precision that 92 common conopeptides are present in the venom of the two mollusc-hunting cone snails, representing 24.4% (out of 376 peptides) and 18.4% (out of 499 peptides) of C. bandanus and C. marmoreus components, respectively. The proteomic comparison of the two close-relative interspecies suggests both common and different strategies for mature conopeptide production in the two species. The overall estimation of putative conopeptide disulphide bridges reveals 75% and 61% of "disulphide-rich" peptides in C. bandanus and C. marmoreus venom components, respectively. The same amino acid sequence for Bn1.1 and Mr1.1, determined at the genomic level, was also found in the two venoms, besides other common conopeptides. Confidently, the broader distribution of C. bandanus compared to C. marmoreus guarantee new opportunities for discovering conopeptides with original pharmacological properties.


Assuntos
Caramujo Conus/química , Venenos de Moluscos/química , Animais , Cromatografia Líquida , Biologia Computacional , Conotoxinas/química , Caramujo Conus/classificação , Cisteína/química , Proteômica , Espectrometria de Massas por Ionização por Electrospray , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA