Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 327(1): F103-F112, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38779750

RESUMO

α-1-Microglobulin (A1M) is a circulating glycoprotein with antioxidant, heme-binding, and mitochondrial protection properties. The investigational drug RMC-035, a modified therapeutic A1M protein, was assessed for biodistribution and pharmacological activity in a broad set of in vitro and in vivo experiments, supporting its clinical development. Efficacy and treatment posology were assessed in various models of kidney ischemia and reperfusion injury (IRI). Real-time glomerular filtration rate (GFR), functional renal biomarkers, tubular injury biomarkers (NGAL and KIM-1), and histopathology were evaluated. Fluorescently labeled RMC-035 was used to assess biodistribution. RMC-035 demonstrated consistent and reproducible kidney protection in rat IRI models as well as in a model of IRI imposed on renal impairment and in a mouse IRI model, where it reduced mortality. Its pharmacological activity was most pronounced with combined dosing pre- and post-ischemia and weaker with either pre- or post-ischemia dosing alone. RMC-035 rapidly distributed to the kidneys via glomerular filtration and selective luminal uptake by proximal tubular cells. IRI-induced expression of kidney heme oxygenase-1 was inhibited by RMC-035, consistent with its antioxidative properties. RMC-035 also dampened IRI-associated inflammation and improved mitochondrial function, as shown by tubular autofluorescence. Taken together, the efficacy of RMC-035 is congruent with its targeted mechanism(s) and biodistribution profile, supporting its further clinical evaluation as a novel kidney-protective therapy.NEW & NOTEWORTHY A therapeutic A1M protein variant (RMC-035) is currently in phase 2 clinical development for renal protection in patients undergoing open-chest cardiac surgery. It targets several key pathways underlying kidney injury in this patient group, including oxidative stress, heme toxicity, and mitochondrial dysfunction. RMC-035 is rapidly eliminated from plasma, distributing to kidney proximal tubules, and demonstrates dose-dependent efficacy in numerous models of ischemia-reperfusion injury, particularly when administered before ischemia. These results support its continued clinical evaluation.


Assuntos
alfa-Globulinas , Rim , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/tratamento farmacológico , alfa-Globulinas/metabolismo , alfa-Globulinas/farmacologia , Masculino , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Modelos Animais de Doenças , Taxa de Filtração Glomerular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Humanos , Camundongos , Heme Oxigenase-1/metabolismo , Ratos , Ratos Sprague-Dawley , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Distribuição Tecidual
2.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279224

RESUMO

Many large-scale studies show that exogenous erythropoietin, erythropoiesis-stimulating agents, lack any renoprotective effects. We investigated the effects of endogenous erythropoietin on renal function in kidney ischemic reperfusion injury (IRI) using the prolyl hydroxylase domain (PHD) inhibitor, Roxadustat (ROX). Four h of hypoxia (7% O2) and 4 h treatment by ROX prior to IRI did not improve renal function. In contrast, 24-72 h pretreatment by ROX significantly improved the decline of renal function caused by IRI. Hypoxia and 4 h ROX increased interstitial cells-derived Epo production by 75- and 6-fold, respectively, before IRI, and worked similarly to exogenous Epo. ROX treatment for 24-72 h increased Epo production during IRI by 9-fold. Immunohistochemistry revealed that 24 h ROX treatment induced Epo production in proximal and distal tubules and worked similarly to endogenous Epo. Our data show that tubular endogenous Epo production induced by 24-72 h ROX treatment results in renoprotection but peritubular exogenous Epo production by interstitial cells induced by hypoxia and 4 h ROX treatment did not. Stimulation of tubular, but not peritubular, Epo production may link to renoprotection.


Assuntos
Eritropoetina , Inibidores de Prolil-Hidrolase , Traumatismo por Reperfusão , Humanos , Eritropoetina/farmacologia , Rim , Epoetina alfa/farmacologia , Inibidores de Prolil-Hidrolase/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Hipóxia
3.
Curr Issues Mol Biol ; 44(3): 998-1011, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35723289

RESUMO

Kidney proximal tubules are a key segment in the reabsorption of solutes and water from the glomerular ultrafiltrate, an essential process for maintaining homeostasis in body fluid compartments. The abundant content of Na+ in the extracellular fluid determines its importance in the regulation of extracellular fluid volume, which is particularly important for different physiological processes including blood pressure control. Basolateral membranes of proximal tubule cells have the classic Na+ + K+-ATPase and the ouabain-insensitive, K+-insensitive, and furosemide-sensitive Na+-ATPase, which participate in the active Na+ reabsorption. Here, we show that nanomolar concentrations of ceramide-1 phosphate (C1P), a bioactive sphingolipid derived in biological membranes from different metabolic pathways, promotes a strong inhibitory effect on the Na+-ATPase activity (C1P50 ≈ 10 nM), leading to a 72% inhibition of the second sodium pump in the basolateral membranes. Ceramide-1-phosphate directly modulates protein kinase A and protein kinase C, which are known to be involved in the modulation of ion transporters including the renal Na+-ATPase. Conversely, we did not observe any effect on the Na+ + K+-ATPase even at a broad C1P concentration range. The significant effect of ceramide-1-phosphate revealed a new potent physiological and pathophysiological modulator for the Na+-ATPase, participating in the regulatory network involving glycero- and sphingolipids present in the basolateral membranes of kidney tubule cells.

4.
Kidney Int ; 102(4): 798-814, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35716954

RESUMO

The small GTPase protein RhoA has two effectors, ROCK (Rho-associated protein kinase 1) and mDIA1 (protein diaphanous homolog 1), which cooperate reciprocally. However, temporal regulation of RhoA and its effectors in obesity-induced kidney damage remains unclear. Here, we investigated the role of RhoA activation in the proximal tubules at the early and late stages of obesity-induced kidney damage. In mice, a three-week high-fat-diet induced proximal tubule hypertrophy and damage without increased albuminuria, and RhoA/mDIA1 activation without ROCK activation. Conversely, a 12-week high-fat diet induced proximal tubule hypertrophy, proximal tubule damage, increased albuminuria, and RhoA/ROCK activation without mDIA1 elevation. Proximal tubule hypertrophy resulting from cell cycle arrest accompanied by downregulation of the multifunctional cyclin-dependent kinase inhibitor p27Kip1 was elicited by RhoA activation. Mice overexpressing proximal tubule-specific and dominant-negative RHOA display amelioration of high-fat diet-induced kidney hypertrophy, cell cycle abnormalities, inflammation, and renal impairment. In human proximal tubule cells, mechanical stretch mimicking hypertrophy activated ROCK, which triggered inflammation. In human kidney samples from normal individuals with a body mass index of about 25, proximal tubule cell size correlated with body mass index, proximal tubule cell damages, and mDIA1 expression. Thus, RhoA activation in proximal tubules is critical for the initiation and progression of obesity-induced kidney damage. Hence, the switch in the downstream RhoA effector in proximal tubule represents a transition from normal to pathogenic kidney adaptation and to body weight gain, leading to obesity-induced kidney damage.


Assuntos
Albuminúria , Quinases Associadas a rho , Animais , Quinases Ciclina-Dependentes , Humanos , Hipertrofia , Inflamação , Túbulos Renais Proximais/metabolismo , Camundongos , Obesidade/complicações , Quinases Associadas a rho/metabolismo
5.
Molecules ; 27(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35164384

RESUMO

Anemia is a major complication of chronic renal failure. To treat this anemia, prolylhydroxylase domain enzyme (PHD) inhibitors as well as erythropoiesis-stimulating agents (ESAs) have been used. Although PHD inhibitors rapidly stimulate erythropoietin (Epo) production, the precise sites of Epo production following the administration of these drugs have not been identified. We developed a novel method for the detection of the Epo protein that employs deglycosylation-coupled Western blotting. With protein deglycosylation, tissue Epo contents can be quantified over an extremely wide range. Using this method, we examined the effects of the PHD inhibitor, Roxadustat (ROX), and severe hypoxia on Epo production in various tissues in rats. We observed that ROX increased Epo mRNA expression in both the kidneys and liver. However, Epo protein was detected in the kidneys but not in the liver. Epo protein was also detected in the salivary glands, spleen, epididymis and ovaries. However, both PHD inhibitors (ROX) and severe hypoxia increased the Epo protein abundance only in the kidneys. These data show that, while Epo is produced in many tissues, PHD inhibitors as well as severe hypoxia regulate Epo production only in the kidneys.


Assuntos
Eritropoetina/metabolismo , Glicina/análogos & derivados , Isoquinolinas/farmacologia , Inibidores de Prolil-Hidrolase/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Animais , Eritropoetina/análise , Eritropoetina/genética , Feminino , Glicina/farmacologia , Hipóxia/genética , Hipóxia/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
6.
Am J Physiol Renal Physiol ; 321(6): F715-F739, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34632812

RESUMO

Kidneys, one of the vital organs in our body, are responsible for maintaining whole body homeostasis. The complexity of renal function (e.g., filtration, reabsorption, fluid and electrolyte regulation, and urine production) demands diversity not only at the level of cell types but also in their overall distribution and structural framework within the kidney. To gain an in depth molecular-level understanding of the renal system, it is imperative to discern the components of kidney and the types of cells residing in each of the subregions. Recent developments in labeling, tracing, and imaging techniques have enabled us to mark, monitor, and identify these cells in vivo with high efficiency in a minimally invasive manner. In this review, we summarize different cell types, specific markers that are uniquely associated with those cell types, and their distribution in the kidney, which altogether make kidneys so special and different. Cellular sorting based on the presence of certain proteins on the cell surface allowed for the assignment of multiple markers for each cell type. However, different studies using different techniques have found contradictions in cell type-specific markers. Thus, the term "cell marker" might be imprecise and suboptimal, leading to uncertainty when interpreting the data. Therefore, we strongly believe that there is an unmet need to define the best cell markers for a cell type. Although the compendium of renal-selective marker proteins presented in this review is a resource that may be useful to researchers, we acknowledge that the list may not be necessarily exhaustive.


Assuntos
Biomarcadores/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Animais , Humanos , Rim/patologia , Rim/fisiopatologia , Nefropatias/diagnóstico , Nefropatias/fisiopatologia , Nefropatias/terapia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Túbulos Renais/fisiopatologia , Valor Preditivo dos Testes , Prognóstico
7.
Nephrol Dial Transplant ; 36(6): 988-997, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33367789

RESUMO

BACKGROUND: The nicotinamide adenine dinucleotide phosphate oxidase isoform 4 (Nox4) mediates reactive oxygen species (ROS) production and renal fibrosis in diabetic kidney disease (DKD) at the level of the podocyte. However, the mitochondrial localization of Nox4 and its role as a mitochondrial bioenergetic sensor has recently been reported. Whether Nox4 drives pathology in DKD within the proximal tubular compartment, which is densely packed with mitochondria, is not yet known. METHODS: We generated a proximal tubular-specific Nox4 knockout mouse model by breeding Nox4flox/flox mice with mice expressing Cre recombinase under the control of the sodium-glucose cotransporter-2 promoter. Subsets of Nox4ptKO mice and their Nox4flox/flox littermates were injected with streptozotocin (STZ) to induce diabetes. Mice were followed for 20 weeks and renal injury was assessed. RESULTS: Genetic ablation of proximal tubular Nox4 (Nox4ptKO) resulted in no change in renal function and histology. Nox4ptKO mice and Nox4flox/flox littermates injected with STZ exhibited the hallmarks of DKD, including hyperfiltration, albuminuria, renal fibrosis and glomerulosclerosis. Surprisingly, diabetes-induced renal injury was not improved in Nox4ptKO STZ mice compared with Nox4flox/flox STZ mice. Although diabetes conferred ROS overproduction and increased the mitochondrial oxygen consumption rate, proximal tubular deletion of Nox4 did not normalize oxidative stress or mitochondrial bioenergetics. CONCLUSIONS: Taken together, these results demonstrate that genetic deletion of Nox4 from the proximal tubules does not influence DKD development, indicating that Nox4 localization within this highly energetic compartment is dispensable for chronic kidney disease pathogenesis in the setting of diabetes.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Nefropatias Diabéticas/genética , Rim , Túbulos Renais , Túbulos Renais Proximais , Camundongos , NADP , NADPH Oxidase 4/genética , NADPH Oxidases/genética , Espécies Reativas de Oxigênio
8.
J Pathol ; 252(3): 274-289, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32715474

RESUMO

Disturbed intrauterine development increases the risk of renal disease. Various studies have reported that Notch signalling plays a significant role in kidney development and kidney diseases. A disintegrin and metalloproteinase domain 10 (ADAM10), an upstream protease of the Notch pathway, is also reportedly involved in renal fibrosis. However, how ADAM10 interacts with the Notch pathway and causes renal fibrosis is not fully understood. In this study, using a prenatal chlorpyrifos (CPF) exposure mouse model, we investigated the role of the ADAM10/Notch axis in kidney development and fibrosis. We found that prenatal CPF-exposure mice presented overexpression of Adam10, Notch1 and Notch2, and led to premature depletion of Six2+ nephron progenitors and ectopic formation of proximal tubules (PTs) in the embryonic kidney. These abnormal phenotypic changes persisted in mature kidneys due to the continuous activation of ADAM10/Notch and showed aggravated renal fibrosis in adults. Finally, both ADAM10 and NOTCH2 expression were positively correlated with the degree of renal interstitial fibrosis in IgA nephropathy patients, and increased ADAM10 expression was negatively correlated with decreased kidney function evaluated by serum creatinine, cystatin C, and estimated glomerular filtration rate. Regression analysis also indicated that ADAM10 expression was an independent risk factor for fibrosis in IgAN. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Nefropatias/embriologia , Nefropatias/patologia , Túbulos Renais Proximais/embriologia , Túbulos Renais Proximais/patologia , Proteínas de Membrana/metabolismo , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Animais , Biomarcadores/metabolismo , Western Blotting , Fibrose , Humanos , Imuno-Histoquímica , Nefropatias/metabolismo , Túbulos Renais Proximais/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Distribuição Aleatória , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
9.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360935

RESUMO

Proximal tubules (PTs) take up most of the glucose in the glomerular filtrate and return it to peritubular capillary blood. Sodium-glucose cotransporter 2 (SGLT2) at the apical membrane takes up glucose into the cell. Glucose then flows across the cells and is transported to the interstitium via glucose transporter 2 (GLUT2) at the basolateral membrane. However, glucose transport under SGLT2 inhibition remains poorly understood. In this study, we evaluated the dynamics of a fluorescent glucose analog, 2-NBDG, in the PTs of live mice treated with or without the SGLT2 inhibitor, luseogliflozin. We employed real-time multiphoton microscopy, in which insulin enhanced 2-NBDG uptake in skeletal muscle. Influx and efflux of 2-NBDG in PT cells were compared under hypo-, normo-, and hyperglycemic conditions. Luseogliflozin did not exert significant effects on glucose influx parameters under any level of blood glucose. Our results suggest that blood glucose level per se does not alter glucose influx or efflux kinetics in PTs. In conclusion, neither SGLT2 inhibition nor blood glucose level affect glucose uptake kinetics in PTs. The former was because of glucose influx through basolateral GLUT2, which is an established bidirectional transporter.


Assuntos
Transporte Biológico/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glucose/metabolismo , Túbulos Renais Proximais , Sorbitol/análogos & derivados , Animais , Linhagem Celular , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sorbitol/farmacologia
10.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34948094

RESUMO

Hyperglycemia/diabetes appears to be accompanied by the state of hypoxia, which especially affects kidneys. The aim of the study was to elucidate the mechanism of high glucose action on HIF-1α expression in renal proximal tubule epithelial cells. The research hypotheses included: (1) the participation of transcription factor ChREBP; and (2) the involvement of the effects resulting from pseudohypoxia, i.e., lowered intracellular NAD+/NADH ratio. The experiments were performed on HK-2 cells and primary cells: D-RPTEC (Diseased Human Renal Proximal Tubule Epithelial Cells-Diabetes Type II) and RPTEC (Renal Proximal Tubule Epithelial Cells). Protein and mRNA contents were determined by Western blot and RT-qPCR, respectively. ChREBP binding to DNA was detected applying chromatin immunoprecipitation, followed by RT-qPCR. Gene knockdown was performed using siRNA. Sirtuin activity and NAD+/NADH ratio were measured with commercially available kits. It was found that high glucose in HK-2 cells incubated under normoxic conditions: (1) activated transcription of HIF-1 target genes, elevated HIF-1α and ChREBP content, and increased the efficacy of ChREBP binding to promoter region of HIF1A gene; and (2), although it lowered NAD+/NADH ratio, it affected neither sirtuin activity nor HIF-1α acetylation level. The stimulatory effect of high glucose on HIF-1α expression was not observed upon the knockdown of ChREBP encoding gene. Experiments on RPTEC and D-RPTEC cells demonstrated that HIF-1α content in diabetic proximal tubular cells was lower than that in normal ones but remained high glucose-sensitive, and the latter phenomenon was mediated by ChREBP. Thus, it is concluded that the mechanism of high glucose-evoked increase in HIF-1α content in renal proximal tubule endothelial cells involves activation of ChREBP, indirectly capable of HIF1A gene up-regulation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Epiteliais/metabolismo , Glucose/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Túbulos Renais Proximais/metabolismo , Regulação para Cima/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
11.
Molecules ; 26(17)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34500833

RESUMO

The kidney is a main site of erythropoietin production in the body. We developed a new method for the detection of Epo protein by deglycosylation-coupled Western blotting. Detection of deglycosylated Epo enables the examination of small changes in Epo production. Using this method, we investigated the effects of angiotensin II (ATII) on Epo production in the kidney. ATII stimulated the plasma Epo concentration; Epo, HIF2α, and PHD2 mRNA expression in nephron segments in the renal cortex and outer medulla; and Epo protein expression in the renal cortex. In situ hybridization and immunohistochemistry revealed that ATII stimulates Epo mRNA and protein expression not only in proximal tubules but also in collecting ducts, especially in intercalated cells. These data support the regulation of Epo production in the kidney by the renin-angiotensin-aldosterone system (RAS).


Assuntos
Angiotensina II/farmacologia , Eritropoetina/metabolismo , Rim/metabolismo , Fígado/metabolismo , Animais , Western Blotting , Humanos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos
12.
Am J Physiol Renal Physiol ; 318(5): F1237-F1245, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32223308

RESUMO

Changes in mitochondrial function are central to many forms of kidney disease, including acute injury, diabetic nephropathy, hypertension, and chronic kidney diseases. As such, there is an increasing need for reliable and fast methods for assessing mitochondrial respiratory function in renal cells. Despite being indispensable for many mechanistic studies, cultured cells or isolated mitochondria, however, often do not recapitulate in vivo or close to in vivo situations. Cultured and/or immortalized cells often change their bioenergetic profile and phenotype compared with in vivo or ex vivo situations, and isolated mitochondria are simply removed from their cellular milieu. This is especially important for extremely complex organs such as the kidney. Here, we report the development and validation of a new approach for the rapid assessment of mitochondrial oxygen consumption on freshly isolated glomeruli or proximal tubular fragments using Agilent SeaHorse XFe24 and XF96 Extracellular Flux Analyzers. We validated the technique in several healthy and diseased rodent models: the C57BL/6J mouse, the diabetic db/db mouse and matching db/+ control mouse, and the Dahl salt-sensitive rat. We compared the data to respiration from isolated mitochondria. The method can be adapted and used for the rapid assessment of mitochondrial oxygen consumption from any rodent model of the investigator's choice. The isolation methods presented here ensure viable and functional proximal tubular fragments and glomeruli, with a preserved cellular environment for studying mitochondrial function within the context of their surroundings and interactions.


Assuntos
Diabetes Mellitus/metabolismo , Metabolismo Energético , Hipertensão/metabolismo , Glomérulos Renais/metabolismo , Túbulos Renais Proximais/metabolismo , Mitocôndrias/metabolismo , Animais , Respiração Celular , Diabetes Mellitus/patologia , Modelos Animais de Doenças , Feminino , Hipertensão/patologia , Glomérulos Renais/patologia , Túbulos Renais Proximais/patologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Consumo de Oxigênio , Ratos Endogâmicos Dahl
13.
Am J Physiol Renal Physiol ; 319(4): F603-F611, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830538

RESUMO

The acyl-CoA synthetase medium-chain family member 2 (Acsm2) gene was first identified and cloned by our group as a kidney-specific "KS" gene. However, its expression pattern and function remain to be clarified. In the present study, we found that the Acsm2 gene was expressed specifically and at a high level in normal adult kidneys. Expression of Acsm2 in kidneys followed a maturational pattern: it was low in newborn mice and increased with kidney development and maturation. In situ hybridization and immunohistochemistry revealed that Acsm2 was expressed specifically in proximal tubular cells of adult kidneys. Data from the Encyclopedia of DNA Elements database revealed that the Acsm2 gene locus in the mouse has specific histone modifications related to the active transcription of the gene exclusively in kidney cells. Following acute kidney injury, partial unilateral ureteral obstruction, and chronic kidney diseases, expression of Acsm2 in the proximal tubules was significantly decreased. In human samples, the expression pattern of ACSM2A, a homolog of mouse Acsm2, was similar to that in mice, and its expression decreased with several types of renal injuries. These results indicate that the expression of Acsm2 parallels the structural and functional maturation of proximal tubular cells. Downregulation of its expression in several models of kidney disease suggests that Acms2 may serve as a novel marker of proximal tubular injury and/or dysfunction.


Assuntos
Coenzima A Ligases/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas Mitocondriais/metabolismo , Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Coenzima A Ligases/genética , Modelos Animais de Doenças , Células Epiteliais/patologia , Fibrose , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/genética , Insuficiência Renal Crônica/enzimologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Renina/genética , Renina/metabolismo , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia
14.
Kidney Int ; 97(5): 904-912, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32107020

RESUMO

Sustained oliguria during fluid resuscitation represents a perplexing problem in patients undergoing therapy for septic acute kidney injury. Here, we tested whether lipopolysaccharide induces filtrate leakage from the proximal tubular lumen into the interstitium, thus disturbing the recovery of urine output during therapy, such as fluid resuscitation, aiming to restore the glomerular filtration rate. Intravital imaging of the tubular flow rate in the proximal tubules in mice showed that lipopolysaccharide did not change the inflow rate of proximal tubule filtrate, reflecting an unchanged glomerular filtration rate, but significantly reduced the outflow rate, resulting in oliguria. Lipopolysaccharide disrupted tight junctions in proximal tubules and induced both paracellular leakage of filtered molecules and interstitial accumulation of extracellular fluid. These changes were diminished by conditional knockout of Toll-like receptor 4 in the proximal tubules. Importantly, these conditional knockout mice showed increased sensitivity to fluid resuscitation and attenuated acute kidney injury. Thus, lipopolysaccharide induced paracellular leakage of filtrate into the interstitium via a Toll-like receptor 4-dependent mechanism in the proximal tubules of endotoxemic mice. Hence, this leakage might diminish the efficacy of fluid resuscitation aiming to maintain renal hemodynamics and glomerular filtration rate.


Assuntos
Lipopolissacarídeos , Receptor 4 Toll-Like , Animais , Hidratação , Taxa de Filtração Glomerular , Humanos , Túbulos Renais , Túbulos Renais Proximais , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Receptor 4 Toll-Like/genética
15.
Kidney Int ; 98(6): 1502-1518, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33038424

RESUMO

COVID-19 morbidity and mortality are increased via unknown mechanisms in patients with diabetes and kidney disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) for entry into host cells. Because ACE2 is a susceptibility factor for infection, we investigated how diabetic kidney disease and medications alter ACE2 receptor expression in kidneys. Single cell RNA profiling of kidney biopsies from healthy living donors and patients with diabetic kidney disease revealed ACE2 expression primarily in proximal tubular epithelial cells. This cell-specific localization was confirmed by in situ hybridization. ACE2 expression levels were unaltered by exposures to renin-angiotensin-aldosterone system inhibitors in diabetic kidney disease. Bayesian integrative analysis of a large compendium of public -omics datasets identified molecular network modules induced in ACE2-expressing proximal tubular epithelial cells in diabetic kidney disease (searchable at hb.flatironinstitute.org/covid-kidney) that were linked to viral entry, immune activation, endomembrane reorganization, and RNA processing. The diabetic kidney disease ACE2-positive proximal tubular epithelial cell module overlapped with expression patterns seen in SARS-CoV-2-infected cells. Similar cellular programs were seen in ACE2-positive proximal tubular epithelial cells obtained from urine samples of 13 hospitalized patients with COVID-19, suggesting a consistent ACE2-coregulated proximal tubular epithelial cell expression program that may interact with the SARS-CoV-2 infection processes. Thus SARS-CoV-2 receptor networks can seed further research into risk stratification and therapeutic strategies for COVID-19-related kidney damage.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Nefropatias Diabéticas/metabolismo , Túbulos Renais Proximais/metabolismo , SARS-CoV-2/metabolismo , Adulto , Idoso , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , COVID-19/complicações , COVID-19/virologia , Estudos de Casos e Controles , Nefropatias Diabéticas/tratamento farmacológico , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade
16.
Mol Cell Biochem ; 458(1-2): 113-124, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30993495

RESUMO

Lipotoxicity, an accumulation of intracellular lipid metabolites, has been proposed as an important pathogenic mechanism contributing to kidney dysfunction in the context of metabolic disease. Palmitic acid, a predominant lipid derivative, can cause lipoapoptosis and the release of inflammatory extracellular vesicles (EVs) in hepatocytes, but the effect of lipids on EV production in chronic kidney disease remains vaguely explored. This study was aimed to investigate whether palmitic acid would stimulate EV release from renal proximal tubular epithelial cells. Human and rat proximal tubular epithelial cells, HK-2 and NRK-52E, were incubated with 1% bovine serum albumin (BSA), BSA-conjugated palmitic acid (PA), and BSA-conjugated oleic acid (OA) for 24-48 h. The EVs released into conditioned media were isolated by ultracentrifugation and quantified by nanoparticle-tracking analysis (NTA). According to NTA, the size distribution of EVs was 30-150 nm with similar mode sizes in all experimental groups. Moreover, BSA-induced EV release was significantly enhanced in the presence of PA, whereas EV release was not altered by the addition of OA. In NRK-52E cells, PA-enhanced EV release was associated with an induction of cell apoptosis reflected by an increase in cleaved caspase-3 protein by Western blot and Annexin V positive cells analyzed by flow cytometry. Additionally, confocal microscopy confirmed the uptake of lipid-induced EVs by recipient renal proximal tubular cells. Collectively, our results indicate that PA stimulates EV release from cultured proximal tubular epithelial cells. Thus, extended characterization of lipid-induced EVs may constitute new signaling paradigms contributing to chronic kidney disease pathology.


Assuntos
Apoptose/efeitos dos fármacos , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Túbulos Renais Proximais/metabolismo , Ácido Palmítico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Células Epiteliais/citologia , Humanos , Túbulos Renais Proximais/citologia , Ácido Palmítico/química , Ratos
17.
Int J Mol Sci ; 20(15)2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390837

RESUMO

Carbonic anhydrases (CAs) catalyze a reaction fundamental for life: the bidirectional conversion of carbon dioxide (CO2) and water (H2O) into bicarbonate (HCO3-) and protons (H+). These enzymes impact numerous physiological processes that occur within and across the many compartments in the body. Within compartments, CAs promote rapid H+ buffering and thus the stability of pH-sensitive processes. Between compartments, CAs promote movements of H+, CO2, HCO3-, and related species. This traffic is central to respiration, digestion, and whole-body/cellular pH regulation. Here, we focus on the role of mathematical modeling in understanding how CA enhances buffering as well as gradients that drive fluxes of CO2 and other solutes (facilitated diffusion). We also examine urinary acid secretion and the carriage of CO2 by the respiratory system. We propose that the broad physiological impact of CAs stem from three fundamental actions: promoting H+ buffering, enhancing H+ exchange between buffer systems, and facilitating diffusion. Mathematical modeling can be a powerful tool for: (1) clarifying the complex interdependencies among reaction, diffusion, and protein-mediated components of physiological processes; (2) formulating hypotheses and making predictions to be tested in wet-lab experiments; and (3) inferring data that are impossible to measure.


Assuntos
Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Modelos Teóricos , Animais , Soluções Tampão , Dióxido de Carbono/química , Difusão , Relação Dose-Resposta a Droga , Ativação Enzimática , Humanos , Concentração de Íons de Hidrogênio , Membranas Artificiais , Redes e Vias Metabólicas , Modelos Biológicos , Fenômenos Fisiológicos Respiratórios
18.
Pflugers Arch ; 470(9): 1311-1323, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29744639

RESUMO

Given currently poor toxicity translational predictions for drug candidates, improved mechanistic understanding underlying nephrotoxicity and drug renal clearance is needed to improve drug development and safety screening. Therefore, better relevant and well-characterized in vitro screening models are required to reliably predict human nephrotoxicity. Because kidney proximal tubules are central to active drug uptake and secretion processes and therefore to nephrotoxicity, this study acquired regio-specific expression data from recently reported primary proximal tubule three-dimensional (3D) hyaluronic acid gel culture and non-gel embedded cultured murine proximal tubule suspensions used in nephrotoxicity assays. Quantitative assessment of the mRNA expression of 21 known kidney tubule markers and important proximal tubule transporters with known roles in drug transport was obtained. Asserting superior gene expression levels over current commonly used two-dimensional (2D) kidney cell culture lines was the study objective. Hence, we compare previously published gel-based 3D proximal tubule fragment culture and their non-gel suspensions for up to 1 week. We demonstrate that 3D tubule culture exhibits superior gene expression levels and profiles compared to published commonly used 2D kidney cell lines (Caki-1 and HK-2) in plastic plate monocultures. Additionally, nearly all tested genes retain mRNA expression after 7 days in both proximal tubule cultures, a limitation of 2D cell culture lines. Importantly, gel presence is shown not to interfere with the gene expression assay. Western blots confirm protein expression of OAT1 and 3 and OCT2. Functional transport assays confirm their respective transporter functions in vitro. Overall, results validate retention of essential toxicity-relevant transporters in this published 3D proximal tubule model over conventional 2D kidney cell cultures, producing opportunities for more reliable, sensitive, and comprehensive drug toxicity studies relevant to drug development and nephrotoxicity goals.


Assuntos
Transporte Biológico/fisiologia , Túbulos Renais Proximais/metabolismo , Preparações Farmacêuticas/metabolismo , Transcriptoma/fisiologia , Animais , Técnicas de Cultura de Células , Expressão Gênica/fisiologia , Túbulos Renais Proximais/fisiologia , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo
19.
Am J Physiol Renal Physiol ; 314(4): F551-F560, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212764

RESUMO

Epigenetic abnormalities have been suggested to mediate metabolic memory observed in diabetic complications. We have shown that epigenetic alterations may induce persistent phenotypic changes in the proximal tubules of the diabetic kidneys. In this study, we show that pregnane X receptor (PXR), a xenobiotic nuclear receptor, is epigenetically altered and upregulated and may have a possible function in the diabetic kidney. PXR has been shown to play a critical role in metabolic changes in obesity and diabetes; however, its distribution and function in the kidney are unknown. In the normal kidney, Pxr was selectively expressed in the proximal tubular cells with demethylation in the promoter DNA. In db/db mice, significant increases in Pxr mRNA, further demethylation of DNA, and stimulatory histone marks in the promoter were observed. Epigenetic changes are likely to play a causative role in PXR induction, since a DNA methyltransferase inhibitor increased PXR mRNA in cultured human proximal tubular cells. Administration of a PXR agonist increased mRNA levels of solute carrier organic anion transporter family member 2B1 ( Slco2b1), a xenobiotic transporter; response gene to complement 32 ( Rgc32), a molecule known to exert fibrotic effects in the kidney; and phosphoenolpyruvate carboxykinase 1 ( Pck1), a gluconeogenic enzyme in the kidney. The expressions of these genes were inhibited by PXR small interfering RNA in cultured proximal tubular cells. Increased mRNA levels of Slco2b1, Rgc32, and Pck1 were also observed in the kidney of db/db mice. These data indicate that PXR is upregulated in the diabetic kidney with aberrant epigenetic modifications and may modulate the course of diabetic kidney disease through the activation of these genes.


Assuntos
Metilação de DNA , Nefropatias Diabéticas/genética , Metabolismo Energético/genética , Epigênese Genética , Túbulos Renais Proximais/metabolismo , Receptor de Pregnano X/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Fenótipo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Receptor de Pregnano X/metabolismo , Regiões Promotoras Genéticas
20.
Am J Physiol Renal Physiol ; 312(5): F879-F886, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27903492

RESUMO

The renal proximal tubules are a key functional component of the kidney and express the angiotensin precursor angiotensinogen; however, it is unclear the extent that tubular angiotensinogen reflects local synthesis or internalization. Therefore, the current study established the extent to which angiotensinogen is internalized by proximal tubules and the intracellular distribution. Proximal tubules were isolated from the kidney cortex of male sheep by enzymatic digestion and a discontinuous Percoll gradient. Tubules were incubated with radiolabeled 125I-angiotensinogen for 2 h at 37°C in serum/phenol-free DMEM/F12 media. Approximately 10% of exogenous 125I-angiotensinogen was internalized by sheep tubules. Subcellular fractionation revealed that 21 ± 4% of the internalized 125I-angiotensinogen associated with the mitochondrial fraction with additional labeling evident in the nucleus (60 ± 7%), endoplasmic reticulum (4 ± 0.5%), and cytosol (15 ± 4%; n = 4). Subsequent studies determined whether mitochondria directly internalized 125I-angiotensinogen using isolated mitochondria from renal cortex and human HK-2 proximal tubule cells. Sheep cortical and HK-2 mitochondria internalized 125I-angiotensinogen at a comparable rate of (33 ± 9 vs. 21 ± 10 pmol·min-1·mg protein-1; n = 3). Lastly, unlabeled angiotensinogen (100 nM) competed for 125I-angiotensinogen uptake to a greater extent than human albumin in HK-2 mitochondria (60 ± 2 vs. 16 ± 13%; P < 0.05, n = 3). Collectively, our data demonstrate angiotensinogen import and subsequent trafficking to the mitochondria in proximal tubules. We conclude that this pathway may constitute a source of the angiotensinogen precursor for the mitochondrial expression of angiotensin peptides.


Assuntos
Angiotensinogênio/metabolismo , Túbulos Renais Proximais/metabolismo , Mitocôndrias/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Humanos , Técnicas In Vitro , Masculino , Membranas Mitocondriais/metabolismo , Transporte Proteico , Carneiro Doméstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA