Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 19(10): 1988-1999, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33932077

RESUMO

RNase P functions either as a catalytic ribonucleoprotein (RNP) or as an RNA-free polypeptide to catalyse RNA processing, primarily tRNA 5' maturation. To the growing evidence of non-canonical roles for RNase P RNP subunits including regulation of chromatin structure and function, we add here a role for the rice RNase P Rpp30 in innate immunity. This protein (encoded by LOC_Os11g01074) was uncovered as the top hit in yeast two-hybrid assays performed with the rice histone deacetylase HDT701 as bait. We showed that HDT701 and OsRpp30 are localized to the rice nucleus, OsRpp30 expression increased post-infection by Pyricularia oryzae (syn. Magnaporthe oryzae), and OsRpp30 deacetylation coincided with HDT701 overexpression in vivo. Overexpression of OsRpp30 in transgenic rice increased expression of defence genes and generation of reactive oxygen species after pathogen-associated molecular pattern elicitor treatment, outcomes that culminated in resistance to a fungal (P. oryzae) and a bacterial (Xanthomonas oryzae pv. oryzae) pathogen. Knockout of OsRpp30 yielded the opposite phenotypes. Moreover, HA-tagged OsRpp30 co-purified with RNase P pre-tRNA cleavage activity. Interestingly, OsRpp30 is conserved in grass crops, including a near-identical C-terminal tail that is essential for HDT701 binding and defence regulation. Overall, our results suggest that OsRpp30 plays an important role in rice immune response to pathogens and provides a new approach to generate broad-spectrum disease-resistant rice cultivars.


Assuntos
Magnaporthe , Oryza , Xanthomonas , Ascomicetos , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Subunidades Proteicas , Ribonuclease P
2.
Plant Biotechnol J ; 19(5): 1052-1064, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33368943

RESUMO

Nucleotide-binding site-leucine-rich repeat (NB-LRR) resistance proteins are critical for plant resistance to pathogens; however, their mechanism of activation and signal transduction is still not well understood. We identified a mutation in an as yet uncharacterized rice coiled-coil (CC)-NB-LRR, Oryza sativa RPM1-like resistance gene 1 (OsRLR1), which leads to hypersensitive response (HR)-like lesions on the leaf blade and broad-range resistance to the fungal pathogen Pyricularia oryzae (syn. Magnaporthe oryzae) and the bacterial pathogen Xanthomonas oryzae pv. oryzae, together with strong growth reduction. Consistently, OsRLR1-overexpression lines showed enhanced resistance to both pathogens. Moreover, we found that OsRLR1 mediates the defence response through direct interaction in the nucleus with the transcription factor OsWRKY19. Down-regulation of OsWRKY19 in the rlr1 mutant compromised the HR-like phenotype and resistance response, and largely restored plant growth. OsWRKY19 binds to the promoter of OsPR10 to activate the defence response. Taken together, our data highlight the role of a new residue involved in the NB-LRR activation mechanism, allowing identification of a new NB-LRR downstream signalling pathway.


Assuntos
Oryza , Xanthomonas , Ascomicetos , Sítios de Ligação , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Nucleotídeos , Oryza/genética , Oryza/metabolismo , Doenças das Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867341

RESUMO

The reactive oxygen species (ROS) burst is the most common plant immunity mechanism to prevent pathogen infection, although the exact role of ROS in plant immunity has not been fully elucidated. We investigated the expression and translocation of Oryza sativa respiratory burst oxidase homologue B (OsRBOHB) during compatible and incompatible interactions between rice epidermal cells and the pathogenic fungus Pyricularia oryzae (syn. Magnaporthe oryzae). We characterized the functional role of ROS focal accumulation around invading hyphae during P. oryzae infection process using the OsRBOHB inhibitor diphenyleneiodonium (DPI) and the actin filament polymerization inhibitor cytochalasin (Cyt) A. OsRBOHB was strongly induced during incompatible rice-P. oryzae interactions, and newly synthesized OsRBOHB was focally distributed at infection sites. High concentrations of ROS focally accumulated at the infection sites and suppressed effector biotrophy-associated secreted (BAS) proteins BAS4 expression and invasive hyphal growth. DPI and Cyt A abolished ROS focal accumulation and restored P. oryzae effector BAS4 expression. These results suggest that ROS focal accumulation is able to function as an effective immune mechanism that blocks some effectors including BAS4-expression during P. oryzae infection. Disruption of ROS focal accumulation around invading hyphae enables successful P. oryzae colonization of rice cells and disease development.


Assuntos
Ascomicetos/fisiologia , Proteínas Fúngicas/genética , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Citocalasinas/farmacologia , Resistência à Doença , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oniocompostos/farmacologia , Oryza/microbiologia , Doenças das Plantas/prevenção & controle , Imunidade Vegetal
4.
Biosci Biotechnol Biochem ; 82(11): 1922-1930, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30022707

RESUMO

Rice blast caused by Pyricularia oryzae (syn. Magnaporthe oryzae) is a disease devastating to rice. We have studied the Arabidopsis-P. oryzae pathosystem as a model system for nonhost resistance (NHR) and found that SOBIR1, but not BAK1, is a positive regulator of NHR to P. oryzae in Arabidopsis. AGB1 is also involved in NHR. However, the genetic interactions between SOBIR1, BAK1, and AGB1 are uncharacterized. In this study, we delineated the genetic interactions between SOBIR1, BAK1, and AGB1 in NHR to P. oryzae in Arabidopsis and found SOBIR1 and AGB1 independently control NHR to P. oryzae in Arabidopsis pen2-1 mutant plants. Furthermore, XLG2, but not TMM, has a positive role in penetration resistance to P. oryzae in Arabidopsis pen2-1 mutant plants. Our study characterized genetic interactions in Arabidopsis NHR. Abbreviations: PRR: pattern recognition receptor, RLK: receptor-like kinase, RLP: receptor-like protein, BAK1: BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1, BIR1: BAK1-INTERACTING RECEPTOR-LIKE KINASE 1, SOBIR1: SUPPRESSOR OF BIR1-1-1, AGB1: ARABIDOPSIS G PROTEIN ß-SUBUNIT 1, XLG2: EXTRA-LARGE G PROTEIN 2.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/microbiologia , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Magnaporthe/patogenicidade , Proteínas Quinases/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Genes Fúngicos , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/fisiologia , Hifas/crescimento & desenvolvimento , Magnaporthe/genética , Magnaporthe/crescimento & desenvolvimento , Mutação , Proteínas Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA