Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
BMC Cancer ; 21(1): 991, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479484

RESUMO

BACKGROUND: The study here investigated quantitative ultrasound (QUS) parameters to assess tumour response to ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) treatment in vivo. Mice bearing prostate cancer xenografts were exposed to various treatment conditions including 1% (v/v) Definity microbubbles stimulated at ultrasound pressures 246 kPa and 570 kPa and HT duration of 0, 10, 40, and 50 min. Ultrasound radiofrequency (RF) data were collected using an ultrasound transducer with a central frequency of 25 MHz. QUS parameters based on form factor models were used as potential biomarkers of cell death in prostate cancer xenografts. RESULTS: The average acoustic concentration (AAC) parameter from spherical gaussian and the fluid-filled spherical models were the most efficient imaging biomarker of cell death. Statistical significant increases of AAC were found in the combined treatment groups: 246 kPa + 40 min, 246 kPa + 50 min, and 570 kPa + 50 min, in comparison with control tumours (0 kPa + 0 min). Changes in AAC correlates strongly (r2 = 0.62) with cell death fraction quantified from the histopathological analysis. CONCLUSION: Scattering property estimates from spherical gaussian and fluid-filled spherical models are useful imaging biomarkers for assessing tumour response to treatment. Our observation of changes in AAC from high ultrasound frequencies was consistent with previous findings where parameters related to the backscatter intensity (AAC) increased with cell death.


Assuntos
Hipertermia Induzida/métodos , Neoplasias da Próstata/terapia , Ultrassom/métodos , Animais , Apoptose , Proliferação de Células , Terapia Combinada , Humanos , Masculino , Camundongos , Camundongos SCID , Microbolhas , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Med Phys ; 50(2): 1251-1256, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36564922

RESUMO

BACKGROUND: While radiation therapy (RT) is a critical component of breast cancer therapy and is known to decrease overall local recurrence rates, recent studies have shown that normal tissue radiation damage may increase recurrence risk. Fibrosis is a well-known consequence of RT, but the specific sequence of molecular and mechanical changes induced by RT remains poorly understood. PURPOSE: To improve cancer therapy outcomes, there is a need to understand the role of the irradiated tissue microenvironment in tumor recurrence. This study seeks to evaluate the use of spectral quantitative ultrasound (spectral QUS) for real time determination of the normal tissue characteristic radiation response and to correlate these results to molecular features in irradiated tissues. METHODS: Murine mammary fat pads (MFPs) were irradiated to 20 Gy, and spectral QUS was used to analyze tissue physical properties pre-irradiation as well as at 1, 5, and 10 days post-irradiation. Tissues were processed for scanning electron microscopy imaging as well as histological and immunohistochemical staining to evaluate morphology and structure. RESULTS: Tissue morphological and structural changes were observed non-invasively following radiation using mid-band fit (MBF), spectral slope (SS), and spectral intercept (SI) measurements obtained from spectral QUS. Statistically significant shifts in MBF and SI indicate structural tissue changes in real time, which matched histological observations. Radiation damage was indicated by increased adipose tissue density and extracellular matrix (ECM) deposition. CONCLUSIONS: Our findings demonstrate the potential of using spectral QUS to noninvasively evaluate normal tissue changes resulting from radiation damage. This supports further pre-clinical studies to determine how the tissue microenvironment and physical properties change in response to therapy, which may be important for improving treatment strategies.


Assuntos
Neoplasias da Mama , Recidiva Local de Neoplasia , Humanos , Animais , Camundongos , Feminino , Ultrassonografia/métodos , Neoplasias da Mama/radioterapia , Fibrose , Análise Espectral/métodos , Microambiente Tumoral
3.
Theranostics ; 8(2): 314-327, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29290810

RESUMO

High-dose radiotherapy effects are regulated by acute tumour endothelial cell death followed by rapid tumour cell death instead of canonical DNA break damage. Pre-treatment with ultrasound-stimulated microbubbles (USMB) has enabled higher-dose radiation effects with conventional radiation doses. This study aimed to confirm acute and longitudinal relationships between vascular shutdown and tumour cell death following radiation and USMB in a wild type murine fibrosarcoma model using in vivo imaging. Methods: Tumour xenografts were treated with single radiation doses of 2 or 8 Gy alone, or in combination with low-/high-concentration USMB. Vascular changes and tumour cell death were evaluated at 3, 24 and 72 h following therapy, using high-frequency 3D power Doppler and quantitative ultrasound spectroscopy (QUS) methods, respectively. Staining using in situ end labelling (ISEL) and cluster of differentiation 31 (CD31) of tumour sections were used to assess cell death and vascular distributions, respectively, as gold standard histological methods. Results: Results indicated a decrease in the power Doppler signal of up to 50%, and an increase of more than 5 dBr in cell-death linked QUS parameters at 24 h for tumours treated with combined USMB and radiotherapy. Power Doppler and quantitative ultrasound results were significantly correlated with CD31 and ISEL staining results (p < 0.05), respectively. Moreover, a relationship was found between ultrasound power Doppler and QUS results, as well as between micro-vascular densities (CD31) and the percentage of cell death (ISEL) (R2 0.5-0.9). Conclusions: This study demonstrated, for the first time, the link between acute vascular shutdown and acute tumour cell death using in vivo longitudinal imaging, contributing to the development of theoretical models that incorporate vascular effects in radiation therapy. Overall, this study paves the way for theranostic use of ultrasound in radiation oncology as a diagnostic modality to characterize vascular and tumour response effects simultaneously, as well as a therapeutic modality to complement radiation therapy.


Assuntos
Morte Celular/efeitos da radiação , Neoplasias/patologia , Neoplasias/radioterapia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microbolhas , Terapia por Ultrassom/métodos , Ondas Ultrassônicas , Ultrassonografia/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA