RESUMO
G-quadruplexes (G4s) are secondary DNA and RNA structures stabilized by positive cations in a central channel formed by stacked tetrads of Hoogsteen base-paired guanines. G4s form from G-rich sequences across the genome, whose biased distribution in regulatory regions points towards a gene-regulatory role. G4s can themselves be regulated by helicases, such as DHX36 (aliases: G4R1 and RHAU), which possess the necessary activity to resolve these stable structures. G4s have been shown to both positively and negatively regulate gene expression when stabilized by ligands, or through the loss of helicase activity. Using DHX36 knockout Jurkat cell lines, we identified widespread, although often subtle, effects on gene expression that are associated with the presence or number of observed G-quadruplexes in promoters or gene regions. Genes that significantly change their expression, particularly those that show a significant increase in RNA abundance under DHX36 knockout, are associated with a range of cellular functions and processes, including numerous transcription factors and oncogenes, and are linked to several cancers. Our work highlights the direct and indirect role of DHX36 in the transcriptome of T-lymphocyte leukemia cells and the potential for DHX36 dysregulation in cancer.
Assuntos
RNA Helicases DEAD-box , Quadruplex G , Neoplasias , Humanos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Expressão Gênica , RNA/metabolismo , Células Jurkat/metabolismoRESUMO
The G-quadruplex (G4) resolvase RNA helicase associated with AU-rich element (RHAU) possesses the ability to unwind G4 structures in both DNA and RNA molecules. Previously, we revealed that RHAU plays a critical role in embryonic heart development and postnatal heart function through modulating mRNA translation and stability. However, whether RHAU functions to resolve DNA G4 in the regulation of cardiac physiology is still elusive. Here, we identified a phenotype of noncompaction cardiomyopathy in cardiomyocyte-specific Rhau deletion mice, including such symptoms as spongiform cardiomyopathy, heart dilation, and death at young ages. We also observed reduced cardiomyocyte proliferation and advanced sarcomere maturation in Rhau mutant mice. Further studies demonstrated that RHAU regulates the expression levels of several genes associated with ventricular trabeculation and compaction, including the Nkx2-5 and Hey2 that encode cardiac transcription factors of NKX2-5 and Hey2, and the myosin heavy chain 7 (Myh7) whose protein product is MYH7. While RHAU modulates Nkx2-5 mRNA and Hey2 mRNA at the post-transcriptional level, we uncovered that RHAU facilitates the transcription of Myh7 through unwinding of the G4 structures in its promoter. These findings demonstrated that RHAU regulates ventricular chamber development through both transcriptional and post-transcriptional mechanisms. These results contribute to a knowledge base that will help to understand the pathogenesis of diseases such as noncompaction cardiomyopathy.
Assuntos
RNA Helicases DEAD-box , Quadruplex G , Miócitos Cardíacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA/metabolismo , Ventrículos do Coração , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
G-quadruplex structures (G4s) form readily in DNA and RNA and play diverse roles in gene expression and other processes, and their inappropriate formation and stabilization are linked to human diseases. G4s are inherently long-lived, such that their timely unfolding depends on a suite of DNA and RNA helicase proteins. Biochemical analysis of G4 binding and unfolding by individual helicase proteins is important for establishing their levels of activity, affinity, and specificity for G4s, including individual G4s of varying sequence and structure. Here we describe a set of simple, accessible methods in which electrophoretic mobility shift assays (EMSA) are used to measure the kinetics of G4 binding, dissociation, and unfolding by helicase proteins. We focus on practical considerations and the pitfalls that are most likely to arise when these methods are used to study the activities of helicases on G4s.
Assuntos
RNA Helicases DEAD-box , Quadruplex G , RNA Helicases DEAD-box/química , DNA/química , DNA Helicases/genética , DNA Helicases/metabolismo , Humanos , Cinética , RNA/genéticaRESUMO
Post-transcriptional regulation of mRNA translation and stability is primarily achieved by RNA-binding proteins, which are of increasing importance for heart function. Furthermore, G-quadruplex (G4) and G4 resolvase activity are involved in a variety of biological processes. However, the role of G4 resolvase activity in heart function remains unknown. The present study aims to investigate the role of RNA helicase associated with adenylate- and uridylate-rich element (RHAU), an RNA-binding protein with G4 resolvase activity in postnatal heart function through deletion of Rhau in the cardiomyocytes of postnatal mice. RHAU-deficient mice displayed progressive pathological remodeling leading to heart failure and mortality and impaired neonatal heart regeneration. RHAU ablation reduced the protein levels but enhanced mRNA levels of Yap1 and Hexim1 that are important regulators for heart development and postnatal heart function. Furthermore, RHAU was found to associate with both the 5' and 3' UTRs of these genes to destabilize mRNA and enhance translation. Thus, we have demonstrated the important functions of RHAU in the dual regulation of mRNA translation and stability, which is vital for heart physiology.
Assuntos
RNA Helicases DEAD-box/metabolismo , RNA Mensageiro/metabolismo , Recombinases/metabolismo , Regiões 3' não Traduzidas/genética , Regiões 3' não Traduzidas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sítios de Ligação , Western Blotting , Linhagem Celular , Biologia Computacional , RNA Helicases DEAD-box/genética , Ecocardiografia , Células HEK293 , Humanos , Camundongos , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA-Seq , Recombinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAPRESUMO
GGGGCC (G4C2) hexanucleotide repeat expansions in the endosomal trafficking gene C9orf72 are the most common genetic cause of ALS and frontotemporal dementia. Repeat-associated non-AUG (RAN) translation of this expansion through near-cognate initiation codon usage and internal ribosomal entry generates toxic proteins that accumulate in patients' brains and contribute to disease pathogenesis. The helicase protein DEAH-box helicase 36 (DHX36-G4R1) plays active roles in RNA and DNA G-quadruplex (G4) resolution in cells. As G4C2 repeats are known to form G4 structures in vitro, we sought to determine the impact of manipulating DHX36 expression on repeat transcription and RAN translation. Using a series of luciferase reporter assays both in cells and in vitro, we found that DHX36 depletion suppresses RAN translation in a repeat length-dependent manner, whereas overexpression of DHX36 enhances RAN translation from G4C2 reporter RNAs. Moreover, upregulation of RAN translation that is typically triggered by integrated stress response activation is prevented by loss of DHX36. These results suggest that DHX36 is active in regulating G4C2 repeat translation, providing potential implications for therapeutic development in nucleotide repeat expansion disorders.
Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , RNA Helicases DEAD-box/metabolismo , Expansão das Repetições de DNA , Quadruplex G , RNA Helicases/metabolismo , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/metabolismo , Linhagem Celular Tumoral , Demência Frontotemporal/enzimologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Biossíntese de ProteínasRESUMO
DHX36 is a eukaryotic DEAH/RHA family helicase that disrupts G-quadruplex structures (G4s) with high specificity, contributing to regulatory roles of G4s. Here we used a DHX36 truncation to examine the roles of the 13-amino acid DHX36-specific motif (DSM) in DNA G4 recognition and disruption. We found that the DSM promotes G4 recognition and specificity by increasing the G4 binding rate of DHX36 without affecting the dissociation rate. Further, for most of the G4s measured, the DSM has little or no effect on the G4 disruption step by DHX36, implying that contacts with the G4 are maintained through the transition state for G4 disruption. This result suggests that partial disruption of the G4 from the 3' end is sufficient to reach the overall transition state for G4 disruption, while the DSM remains unperturbed at the 5' end. Interestingly, the DSM does not contribute to G4 binding kinetics or thermodynamics at low temperature, indicating a highly modular function. Together, our results animate recent DHX36 crystal structures, suggesting a model in which the DSM recruits G4s in a modular and flexible manner by contacting the 5' face early in binding, prior to rate-limiting capture and disruption of the G4 by the helicase core.
Assuntos
RNA Helicases DEAD-box/metabolismo , DNA/metabolismo , Motivos de Aminoácidos , RNA Helicases DEAD-box/química , DNA/química , Quadruplex G , HumanosRESUMO
G-quadruplexes (G4) are secondary structures of nucleic acids that can form in cells and have diverse biological functions. Several biologically important proteins interact with G-quadruplexes, of which RHAU (or DHX36) - a helicase from the DEAH-box superfamily, was shown to bind and unwind G-quadruplexes efficiently. We report a X-ray co-crystal structure at 1.5â¯Å resolution of an N-terminal fragment of RHAU bound to an exposed tetrad of a parallel-stranded G-quadruplex. The RHAU peptide folds into an L-shaped α-helix, and binds to a G-quadruplex through π-stacking and electrostatic interactions. X-ray crystal structure of our complex identified key amino acid residues important for G-quadruplex-peptide binding interaction at the 3'-end Gâ¢Gâ¢Gâ¢G tetrad. Together with previous solution and crystal structures of RHAU bound to the 5'-end Gâ¢Gâ¢Gâ¢G and Gâ¢Gâ¢Aâ¢T tetrads, our crystal structure highlights the occurrence of a robust G-quadruplex recognition motif within RHAU that can adapt to different accessible tetrads.
Assuntos
RNA Helicases DEAD-box/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Quadruplex G , Conformação de Ácido Nucleico , Motivos de Aminoácidos/genética , Cristalografia por Raios X , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Humanos , Peptídeos/química , Peptídeos/genética , Ligação Proteica/genética , Conformação Proteica em alfa-Hélice/genéticaRESUMO
G-quadruplex (G4) is a non-canonical four-stranded nucleic acid structure and the RHAU helicase has been identified to have high specificity for recognition of parallel-stranded G4s. We have designed and synthesized two stapled peptide analogues of the G4-specfic motif of RHAU, which preserve the G4 binding ability. Characterization of these peptides identified the stapled variants to exhibit higher helical formation propensity in aqueous buffer in comparison to the native RHAU sequence. Moreover, the stapled peptides exhibit superior enzymatic stability towards α-chymotrypsin. Our stapled RHAU peptides can serve as a new tool for targeting G4 nucleic acid structures.
Assuntos
RNA Helicases DEAD-box/química , Quadruplex G , Peptídeos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , RNA Helicases DEAD-box/síntese química , RNA Helicases DEAD-box/metabolismo , Humanos , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-HéliceRESUMO
RNA G-quadruplex (rG4) structure and its association with rG4-binding proteins/peptides are important for its function. However, there is very limited study that investigates what factors are involved in rG4 that drive the rG4-protein/peptide interaction. Here we study and uncover the effect of RNA sequence context and stereochemistry on G-quadruplex-peptide interaction. Using rG4-binding RHAU53 peptide as an example, we report that the number of G-quartet, thermostability, overhanging nucleotides, and RNA base chirality have an impact on rG4-RHAU53 binding. Notably, our data also demonstrate that RHAU53 preferentially binds to 5' G-quartet over 3' G-quartet, and showcase that RHAU53 interacts with unnatural L-rG4 for the first time. Our findings reported here offer unique insights to the potential development of targeting tools that recognize rG4 structure and rG4-binding peptide/protein.
Assuntos
Quadruplex G , Peptídeos/química , Peptídeos/genética , RNA/química , RNA/genética , Motivos de Aminoácidos/genética , Dicroísmo Circular , Modelos Moleculares , Espectrofotometria Ultravioleta , TermodinâmicaRESUMO
RNA-protein complexes (RNPs) are essential components in a variety of cellular processes, and oftentimes exhibit complex structures and show mechanisms that are highly dynamic in conformation and structure. However, biochemical and structural biology approaches are mostly not able to fully elucidate the structurally and especially conformationally dynamic and heterogeneous nature of these RNPs, to which end single molecule Förster resonance energy transfer (smFRET) spectroscopy can be harnessed to fill this gap. Here we summarize the advantages of strategic smFRET studies to investigate RNP dynamics, complemented by structural and biochemical data. Focusing on recent smFRET studies of three essential biological systems, we demonstrate that investigation of RNPs on a single molecule level can answer important functional questions that remained elusive with structural or biochemical approaches alone: The complex structural rearrangements throughout the splicing cycle, unwinding dynamics of the G-quadruplex (G4) helicase RHAU, and aspects in telomere maintenance regulation and synthesis.
Assuntos
Transferência Ressonante de Energia de Fluorescência , Quadruplex G , RNA/química , Imagem Individual de Molécula , Animais , Bovinos , Análise por Conglomerados , Cristalografia por Raios X , Humanos , Cadeias de Markov , Conformação de Ácido Nucleico , Ligação Proteica , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Splicing de RNA , Ribonucleoproteínas , Spliceossomos/química , Telomerase/química , Telômero/química , Telômero/ultraestruturaRESUMO
Guanine-quadruplex (G-quadruplex) structures in mRNAs have been shown to modulate gene expression. However, the overall biological relevance of this process is under debate, as cellular helicases unwind G-quadruplex structures. The helicase Rhau (encoded by the DHX36 gene) was reported to be the major source of RNA G-quadruplex resolving activity in lysates of human cells. In the current study, we depleted Rhau by RNAi-mediated silencing and analyzed the effect on proteins whose mRNAs harbor a G-quadruplex motif in their 5'-UTRs. A targeted investigation of the proto-oncogenes Bcl-2 and NRAS, which are well-known examples for the translational repression of G-quadruplex structures, did not reveal effects caused by Rhau silencing. We therefore carried out a global analysis of changes in protein levels by label-free quantification using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Following Rhau knockdown, of all the identified proteins, only 1.9% were significantly downregulated to at least 70%. According to a bioinformatic analysis with the QGRS mapper, 33% of the downregulated proteins were predicted to harbor a G-quadruplex motif in the 5'-UTR of their respective mRNAs, compared to only 11% in the complete dataset. This indicates that in an unexpectedly small set of genes, in which G-quadruplex motifs are unusually common in the 5'-UTR of their mRNAs, Rhau helicase is responsible for the regulation of their expression.
Assuntos
Regiões 5' não Traduzidas/genética , RNA Helicases DEAD-box/genética , Quadruplex G , Técnicas de Silenciamento de Genes , Interferência de RNA , Sobrevivência Celular , Regulação para Baixo/genética , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismoRESUMO
G-quadruplex (GQ) is a four stranded DNA secondary structure that arises from a guanine rich sequence. Stable formation of GQ in genomic DNA can be counteracted by the resolving activity of specialized helicases including RNA helicase AU (associated with AU rich elements) (RHAU) (G4 resolvase 1), Bloom helicase (BLM), and Werner helicase (WRN). However, their substrate specificity and the mechanism involved in GQ unfolding remain uncertain. Here, we report that RHAU, BLM, and WRN exhibit distinct GQ conformation specificity, but use a common mechanism of repetitive unfolding that leads to disrupting GQ structure multiple times in succession. Such unfolding activity of RHAU leads to efficient annealing exclusively within the same DNA molecule. The same resolving activity is sufficient to dislodge a stably bound GQ ligand, including BRACO-19, NMM, and Phen-DC3. Our study demonstrates a plausible biological scheme where different helicases are delegated to resolve specific GQ structures by using a common repetitive unfolding mechanism that provides a robust resolving power.
Assuntos
RNA Helicases DEAD-box/química , DNA/química , Quadruplex G , RecQ Helicases/química , Imagem Individual de Molécula/métodos , Helicase da Síndrome de Werner/química , Sequência de Bases , Dicroísmo Circular , RNA Helicases DEAD-box/metabolismo , DNA/genética , DNA/metabolismo , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , RecQ Helicases/metabolismo , Especificidade por Substrato , Telômero/genética , Telômero/metabolismo , Helicase da Síndrome de Werner/metabolismoRESUMO
Four-stranded nucleic acid structures called G-quadruplexes have been associated with important cellular processes, which should require G-quadruplex-protein interaction. However, the structural basis for specific G-quadruplex recognition by proteins has not been understood. The DEAH (Asp-Glu-Ala-His) box RNA helicase associated with AU-rich element (RHAU) (also named DHX36 or G4R1) specifically binds to and resolves parallel-stranded G-quadruplexes. Here we identified an 18-amino acid G-quadruplex-binding domain of RHAU and determined the structure of this peptide bound to a parallel DNA G-quadruplex. Our structure explains how RHAU specifically recognizes parallel G-quadruplexes. The peptide covers a terminal guanine base tetrad (G-tetrad), and clamps the G-quadruplex using three-anchor-point electrostatic interactions between three positively charged amino acids and negatively charged phosphate groups. This binding mode is strikingly similar to that of most ligands selected for specific G-quadruplex targeting. Binding to an exposed G-tetrad represents a simple and efficient way to specifically target G-quadruplex structures.
Assuntos
RNA Helicases DEAD-box/metabolismo , Quadruplex G , Peptídeos/química , Sequência de Aminoácidos , RNA Helicases DEAD-box/química , Eletroforese em Gel de Ágar , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , SoluçõesRESUMO
RNA helicase associated with AU-rich element (RHAU) is an ATP-dependent RNA helicase that demonstrates high affinity for quadruplex structures in DNA and RNA. To elucidate the significance of these quadruplex-RHAU interactions, we have performed RNA co-immunoprecipitation screens to identify novel RNAs bound to RHAU and characterize their function. In the course of this study, we have identified the non-coding RNA BC200 (BCYRN1) as specifically enriched upon RHAU immunoprecipitation. Although BC200 does not adopt a quadruplex structure and does not bind the quadruplex-interacting motif of RHAU, it has direct affinity for RHAU in vitro. Specifically designed BC200 truncations and RNase footprinting assays demonstrate that RHAU binds to an adenosine-rich region near the 3'-end of the RNA. RHAU truncations support binding that is dependent upon a region within the C terminus and is specific to RHAU isoform 1. Tests performed to assess whether BC200 interferes with RHAU helicase activity have demonstrated the ability of BC200 to act as an acceptor of unwound quadruplexes via a cytosine-rich region near the 3'-end of the RNA. Furthermore, an interaction between BC200 and the quadruplex-containing telomerase RNA was confirmed by pull-down assays of the endogenous RNAs. This leads to the possibility that RHAU may direct BC200 to bind and exert regulatory functions at quadruplex-containing RNA or DNA sequences.
Assuntos
RNA Helicases DEAD-box/metabolismo , RNA Longo não Codificante/metabolismo , Sequência de Bases , Sítios de Ligação , RNA Helicases DEAD-box/genética , Quadruplex G , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Dados de Sequência Molecular , Ligação Proteica , RNA Longo não Codificante/química , RNA Longo não Codificante/genéticaRESUMO
Intramolecular G-quadruplexes (G4s) are G-rich nucleic acid structures that fold back on themselves via interrupting loops to create stacked planar G-tetrads, in which four guanine bases associate via Hoogsteen hydrogen bonding. The G4 structure is further stabilized by monovalent cations centered between the stacked tetrads. The G-tetrad face on the top and bottom planes of G4s are often the site of interaction with proteins and small molecules. To investigate the potential impact of interrupting loops on both G4 structure and interaction with proteins/small molecules, we characterized a specific G4 from the 3'-UTR of PITX1 mRNA that contains loops of 6 nucleotides using biophysical approaches. We then introduced mutations to specific loops to determine the impact on G4 structure and the ability to interact with both proteins and a G4-specific ligand. Our results suggest that mutation of a specific loop both affects the global G4 structure and impacts the ability to interact with a G4 binding protein and small molecule ligand.
Assuntos
Quadruplex G , MicroRNAs/química , MicroRNAs/ultraestrutura , Conformação de Ácido Nucleico , Fatores de Transcrição Box Pareados/química , Fatores de Transcrição Box Pareados/ultraestrutura , Sítios de Ligação , Simulação por Computador , MicroRNAs/genética , Modelos Químicos , Modelos Genéticos , Modelos Moleculares , Fatores de Transcrição Box Pareados/genética , Ligação Proteica , Proteínas/química , Proteínas/genética , Proteínas/ultraestrutura , Relação Estrutura-AtividadeRESUMO
G-quadruplexes (G4) are RNA and DNA secondary structures formed by the stacking of guanine quartets in guanine rich sequences. Quadruplex-prone motifs may be found in key genomic regions such as telomeres, ribosomal DNA, transcriptional activators and regulators or oncogene promoters. A number of proteins involved in various biological processes are able to interact with G4s. Among them, proteins dedicated to nucleic acids unwinding such as WRN, BLM, FANCJ or PIF1, can unfold G4 structures. Mutations of these helicases are linked to genome instability and to increases in cancer risks. Here, we present a high-throughput fluorescence-based reliable, inexpensive and fast assay to study G4/RHAU interaction. RHAU is an RNA helicase known as the major source of G4 resolution in HeLa cells. Our assay allows to monitor the unfolding properties of RHAU towards DNA and RNA quadruplexes in parallel and to screen for the optimal conditions for its activity. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Assuntos
RNA Helicases DEAD-box/metabolismo , DNA/metabolismo , Quadruplex G , RNA/metabolismo , RNA Helicases DEAD-box/genética , DNA/química , Ensaios de Triagem em Larga Escala , Humanos , Desnaturação de Ácido Nucleico , Potássio/química , Potássio/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , RNA/química , Estabilidade de RNA , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Telômero/química , Telômero/metabolismo , TemperaturaRESUMO
We have developed fluorescent protein probes specific for parallel G-quadruplexes by attaching cyan fluorescent protein to the G-quadruplex-binding motif of the RNA helicase RHAU. Fluorescent probes containing RHAU peptide fragments of different lengths were constructed, and their binding to G-quadruplexes was characterized. The selective recognition and discrimination of G-quadruplex topologies by the fluorescent protein probes was easily detected by the naked eye or by conventional gel imaging.
Assuntos
DNA/análise , Corantes Fluorescentes/química , Quadruplex G , Proteínas Luminescentes/análise , Proteínas Luminescentes/química , Peptídeos/química , RNA/análise , Corantes Fluorescentes/análise , Peptídeos/análiseRESUMO
Polynucleotides containing consecutive tracts of guanines can adopt an intramolecular G-quadruplex structure where multiple planar tetrads of hydrogen-bound guanines stack on top of each other. Remodeling of G-quadruplexes impacts numerous aspects of nucleotide biology including transcriptional and translational control. RNA helicase associated with AU-rich element (RHAU), a member of the ATP-dependent DEX(H/D) family of RNA helicases, has been established as a major cellular quadruplex resolvase. RHAU contains a core helicase domain responsible for ATP binding/hydrolysis/helicase activity and is flanked on either side by N- and C-terminal extensions. The N-terminal extension is required for quadruplex recognition, and we have previously demonstrated complex formation between this domain and a quadruplex from human telomerase RNA. Here we used an integrated approach that includes small angle x-ray scattering, nuclear magnetic resonance spectroscopy, circular dichroism, and dynamic light scattering methods to demonstrate the recognition of G-quadruplexes by the N-terminal domain of RHAU. Based on our results, we conclude that (i) quadruplex from the human telomerase RNA and its DNA analog both adopt a disc shape in solution, (ii) RHAU53-105 adopts a defined and extended conformation in solution, and (iii) the N-terminal domain mediates an interaction with a guanine tetrad face of quadruplexes. Together, these data form the foundation for understanding the recognition of quadruplexes by the N-terminal domain of RHAU.
Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Quadruplex G , RNA/química , RNA/metabolismo , Telomerase/química , Telomerase/metabolismo , Elementos Ricos em Adenilato e Uridilato , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Dicroísmo Circular , RNA Helicases DEAD-box/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Telomerase/genéticaRESUMO
G-quadruplexes (G4s) are reported to present on the SARS-CoV-2 RNA genome and control various viral activities. Specific ligands targeting those viral nucleic acid structures could be investigated as promising detection methods or antiviral reagents to suppress this menacing virus. Herein, we demonstrate the binding between a G4 structure in the RNA of SARS-CoV-2 and a fluorescent probe created by fusing a parallel-G4 specific RHAU53 and a cyan fluorescent protein. The specific binding of G4 in SARS-CoV-2 by RHAU peptide was easily detected under the fluorescence spectrometer. The drawbacks of this approach and potential solutions are also discussed.
RESUMO
G-quadruplexes (G4s) are non-canonical nucleic acid structures formed by guanine (G)-rich sequences, which are ubiquitously found in the human genome and transcriptome. Targeting G4s by specific ligands provides a powerful tool to monitor and regulate G4s-associated biological processes. RHAU peptides, derived from the G4-binding motif of "RNA Helicase associated with AU-rich element" (RHAU), have emerged as extraordinary ligands for specific recognition of parallel G4s. This review highlights the significances of recent studies investigating potential applications of the engineered RHAU peptides incorporated to different functional moieties.