Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int Immunol ; 33(2): 91-105, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32909611

RESUMO

Polymorphisms in the autophagy-related protein 16 like 1 (ATG16L1) and nucleotide-binding oligomerization domain 2 (NOD2) genes are associated with Crohn's disease (CD). Impaired interaction between ATG16L1 and NOD2 underlies CD immunopathogenesis. Although activation of the receptor-interacting serine-threonine kinase (RICK, also known as RIP2), a downstream signaling molecule for NOD2 and multiple toll-like receptors (TLRs), plays a pathogenic role in the development of inflammatory bowel disease, the molecular interaction between ATG16L1 and RICK/RIP2 remains poorly understood. In this study, we examined the physical interaction between ATG16L1 and RICK/RIP2 in human embryonic kidney 293 cells and human monocyte-derived dendritic cells (DCs) expressing excessive and endogenous levels of these proteins, respectively. We established that ATG16L1 binds to RICK/RIP2 kinase domain and negatively regulates TLR2-mediated nuclear factor-kappa B (NF-κB) activation and pro-inflammatory cytokine responses by inhibiting the interaction between TLR2 and RICK/RIP2. Binding of ATG16L1 to RICK/RIP2 suppressed NF-κB activation by down-regulating RICK/RIP2 polyubiquitination. Notably, the percentage of colonic DCs expressing ATG16L1 inversely correlated with IL-6 and TNF-α expression levels in the colon of CD patients. These data suggest that the interaction between ATG16L1 and RICK/RIP2 maintains intestinal homeostasis via the down-regulation of TLR-mediated pro-inflammatory cytokine responses.

2.
Int Immunol ; 31(10): 669-683, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31132297

RESUMO

Previous studies have shown that inhibition of receptor-interacting serine/threonine kinase (RICK) (also known as RIP2) results in amelioration of experimental colitis. This role has largely been attributed to nucleotide-binding oligomerization domain 2 (NOD2) signaling since the latter is considered a major inducer of RICK activation. In this study, we explored the molecular mechanisms accounting for RICK-mediated inhibition of inflammatory bowel disease (IBD). In an initial series of studies focused on trinitrobenzene sulfonic acid (TNBS)-colitis and dextran sodium sulfate (DSS)-colitis we showed that down-regulation of intestinal RICK expression in NOD2-intact mice by intra-rectal administration of a plasmid expressing RICK-specific siRNA was accompanied by down-regulation of pro-inflammatory cytokine responses in the colon and protection of the mice from experimental colitis. Somewhat surprisingly, intra-rectal administration of RICK-siRNA also inhibited TNBS-colitis and DSS-colitis in NOD2-deficient and in NOD1/NOD2-double deficient mice. In complementary studies of humans with IBD we found that expression of RICK, cellular inhibitor of apoptosis protein 2 (cIAP2) and downstream signaling partners were markedly increased in inflamed tissue of IBD compared to controls without marked elevations of NOD1 or NOD2 expression. In addition, the increase in RICK expression correlated with disease activity and pro-inflammatory cytokine responses. These studies thus suggest that NOD1- or NOD2-independenent activation of RICK plays a major role in both murine experimental colitis and human IBD.


Assuntos
Inflamação/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Animais , Humanos , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/imunologia , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA