Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 89: 283-308, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32569523

RESUMO

We have known for decades that long noncoding RNAs (lncRNAs) can play essential functions across most forms of life. The maintenance of chromosome length requires an lncRNA (e.g., hTERC) and two lncRNAs in the ribosome that are required for protein synthesis. Thus, lncRNAs can represent powerful RNA machines. More recently, it has become clear that mammalian genomes encode thousands more lncRNAs. Thus, we raise the question: Which, if any, of these lncRNAs could also represent RNA-based machines? Here we synthesize studies that are beginning to address this question by investigating fundamental properties of lncRNA genes, revealing new insights into the RNA structure-function relationship, determining cis- and trans-acting lncRNAs in vivo, and generating new developments in high-throughput screening used to identify functional lncRNAs. Overall, these findings provide a context toward understanding the molecular grammar underlying lncRNA biology.


Assuntos
Genoma , Biossíntese de Proteínas , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA/genética , Telomerase/genética , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Humanos , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA/metabolismo , RNA Longo não Codificante/química , RNA Longo não Codificante/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade , Telomerase/metabolismo , Homeostase do Telômero , Transcrição Gênica
2.
Cell ; 183(5): 1325-1339.e21, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33080218

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses.


Assuntos
COVID-19/metabolismo , Interações Hospedeiro-Patógeno , Biossíntese de Proteínas , Splicing de RNA , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Células A549 , Animais , COVID-19/virologia , Chlorocebus aethiops , Células HEK293 , Humanos , Interferons/metabolismo , Transporte Proteico , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/metabolismo , RNA Citoplasmático Pequeno/química , RNA Citoplasmático Pequeno/metabolismo , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/metabolismo , Células Vero , Proteínas não Estruturais Virais/química
3.
Mol Cell ; 84(15): 2918-2934.e11, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39025072

RESUMO

The RNA-induced silencing complex (RISC), which powers RNA interference (RNAi), consists of a guide RNA and an Argonaute protein that slices target RNAs complementary to the guide. We find that, for different guide-RNA sequences, slicing rates of perfectly complementary bound targets can be surprisingly different (>250-fold range), and that faster slicing confers better knockdown in cells. Nucleotide sequence identities at guide-RNA positions 7, 10, and 17 underlie much of this variation in slicing rates. Analysis of one of these determinants implicates a structural distortion at guide nucleotides 6-7 in promoting slicing. Moreover, slicing directed by different guide sequences has an unanticipated, 600-fold range in 3'-mismatch tolerance, attributable to guides with weak (AU-rich) central pairing requiring extensive 3' complementarity (pairing beyond position 16) to more fully populate the slicing-competent conformation. Together, our analyses identify sequence determinants of RISC activity and provide biochemical and conformational rationale for their action.


Assuntos
Proteínas Argonautas , Conformação de Ácido Nucleico , RNA Guia de Sistemas CRISPR-Cas , Complexo de Inativação Induzido por RNA , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/química , Humanos , Complexo de Inativação Induzido por RNA/metabolismo , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/química , Cinética , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Interferência de RNA , Sequência de Bases , Células HEK293
4.
Mol Cell ; 84(14): 2682-2697.e6, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38996576

RESUMO

RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs. serine. In addition, we identify the tetrameric assembly and a flap structural motif as key structural elements necessary for binding of RNA to eukaryotic SHMT1. The results presented here suggest that riboregulation may have played a role in evolution of eukaryotic SHMT1 and in compartmentalization of one-carbon metabolism. Our findings provide insights for RNA-based therapeutic strategies targeting this cancer-linked metabolic pathway.


Assuntos
Microscopia Crioeletrônica , Glicina Hidroximetiltransferase , Glicina Hidroximetiltransferase/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/química , Humanos , RNA/metabolismo , RNA/genética , Serina/metabolismo , Regulação Alostérica , Ligação Proteica , Filogenia , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Glicina/metabolismo , Glicina/química , Sítios de Ligação
5.
Mol Cell ; 83(23): 4318-4333.e10, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37989319

RESUMO

RNA unwinding by DExH-type helicases underlies most RNA metabolism and function. It remains unresolved if and how the basic unwinding reaction of helicases is regulated by auxiliary domains. We explored the interplay between the RecA and auxiliary domains of the RNA helicase maleless (MLE) from Drosophila using structural and functional studies. We discovered that MLE exists in a dsRNA-bound open conformation and that the auxiliary dsRBD2 domain aligns the substrate RNA with the accessible helicase tunnel. In an ATP-dependent manner, dsRBD2 associates with the helicase module, leading to tunnel closure around ssRNA. Furthermore, our structures provide a rationale for blunt-ended dsRNA unwinding and 3'-5' translocation by MLE. Structure-based MLE mutations confirm the functional relevance of our model for RNA unwinding. Our findings contribute to our understanding of the fundamental mechanics of auxiliary domains in DExH helicase MLE, which serves as a model for its human ortholog and potential therapeutic target, DHX9/RHA.


Assuntos
Proteínas de Drosophila , RNA Helicases , Animais , Humanos , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Homeostase , RNA/metabolismo , RNA Helicases/metabolismo , RNA de Cadeia Dupla/genética , Fatores de Transcrição/metabolismo
6.
Annu Rev Biochem ; 84: 93-129, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706898

RESUMO

The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79-80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type-specific disorders that often transition from hypoproliferative to hyperproliferative growth.


Assuntos
Células Eucarióticas/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Animais , Células Eucarióticas/química , Humanos , Modelos Moleculares , Proteínas Ribossômicas/química
7.
Mol Cell ; 82(14): 2666-2680.e11, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35709751

RESUMO

Differentiating stem cells must coordinate their metabolism and fate trajectories. Here, we report that the catalytic activity of the glycolytic enzyme Enolase 1 (ENO1) is directly regulated by RNAs leading to metabolic rewiring in mouse embryonic stem cells (mESCs). We identify RNA ligands that specifically inhibit ENO1's enzymatic activity in vitro and diminish glycolysis in cultured human cells and mESCs. Pharmacological inhibition or RNAi-mediated depletion of the protein deacetylase SIRT2 increases ENO1's acetylation and enhances its RNA binding. Similarly, induction of mESC differentiation leads to increased ENO1 acetylation, enhanced RNA binding, and inhibition of glycolysis. Stem cells expressing mutant forms of ENO1 that escape or hyper-activate this regulation display impaired germ layer differentiation. Our findings uncover acetylation-driven riboregulation of ENO1 as a physiological mechanism of glycolytic control and of the regulation of stem cell differentiation. Riboregulation may represent a more widespread principle of biological control.


Assuntos
Glicólise , Fosfopiruvato Hidratase , Animais , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Glicólise/fisiologia , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , RNA/metabolismo
8.
Mol Cell ; 80(5): 903-914.e8, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33242392

RESUMO

Discovering the interaction mechanism and location of RNA-binding proteins (RBPs) on RNA is critical for understanding gene expression regulation. Here, we apply selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) on in vivo transcripts compared to protein-absent transcripts in four human cell lines to identify transcriptome-wide footprints (fSHAPE) on RNA. Structural analyses indicate that fSHAPE precisely detects nucleobases that hydrogen bond with protein. We demonstrate that fSHAPE patterns predict binding sites of known RBPs, such as iron response elements in both known loci and previously unknown loci in CDC34, SLC2A4RG, COASY, and H19. Furthermore, by integrating SHAPE and fSHAPE with crosslinking and immunoprecipitation (eCLIP) of desired RBPs, we interrogate specific RNA-protein complexes, such as histone stem-loop elements and their nucleotides that hydrogen bond with stem-loop-binding proteins. Together, these technologies greatly expand our ability to study and understand specific cellular RNA interactions in RNA-protein complexes.


Assuntos
Conformação de Ácido Nucleico , Proteínas de Ligação a RNA/química , RNA/química , Transcriptoma , Células HeLa , Células Hep G2 , Humanos , Ligação de Hidrogênio , Imunoprecipitação , Células K562
9.
Mol Cell ; 75(4): 741-755.e11, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31324449

RESUMO

Argonaute proteins loaded with microRNAs (miRNAs) or small interfering RNAs (siRNAs) form the RNA-induced silencing complex (RISC), which represses target RNA expression. Predicting the biological targets, specificity, and efficiency of both miRNAs and siRNAs has been hamstrung by an incomplete understanding of the sequence determinants of RISC binding and cleavage. We applied high-throughput methods to measure the association kinetics, equilibrium binding energies, and single-turnover cleavage rates of mouse AGO2 RISC. We find that RISC readily tolerates insertions of up to 7 nt in its target opposite the central region of the guide. Our data uncover specific guide:target mismatches that enhance the rate of target cleavage, suggesting novel siRNA design strategies. Using these data, we derive quantitative models for RISC binding and target cleavage and show that our in vitro measurements and models predict knockdown in an engineered cellular system.


Assuntos
Proteínas Argonautas/química , Modelos Químicos , RNA Interferente Pequeno/química , Complexo de Inativação Induzido por RNA/química , Animais , Camundongos
10.
RNA ; 30(3): 240-255, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164599

RESUMO

XIST noncoding RNA promotes the initiation of X chromosome silencing by recruiting the protein SPEN to one X chromosome in female mammals. The SPEN protein is also called SHARP (SMRT and HDAC-associated repressor protein) and MINT (Msx-2 interacting nuclear target) in humans. SPEN recruits N-CoR2 and HDAC3 to initiate histone deacetylation on the X chromosome, leading to the formation of repressive chromatin marks and silencing gene expression. We dissected the contributions of different RNA and protein regions to the formation of a human XIST-SPEN complex in vitro and identified novel sequence and structure determinants that may contribute to X chromosome silencing initiation. Binding of SPEN to XIST RNA requires RRM 4 of the protein, in contrast to the requirement of RRM 3 and RRM 4 for specific binding to SRA RNA. Measurements of SPEN binding to full-length, dimeric, trimeric, or other truncated versions of the A-repeat region revealed that high-affinity binding of XIST to SPEN in vitro requires a minimum of four A-repeat segments. SPEN binding to XIST A-repeat RNA changes the accessibility of the RNA at specific nucleotide sequences, as indicated by changes in RNA reactivity through chemical structure probing. Based on computational modeling, we found that inter-repeat duplexes formed by multiple A-repeats can present an unpaired adenosine in the context of a double-stranded region of RNA. The presence of this specific combination of sequence and structural motifs correlates with high-affinity SPEN binding in vitro. These data provide new information on the molecular basis of the XIST and SPEN interaction.


Assuntos
RNA Longo não Codificante , Proteínas de Ligação a RNA , Feminino , Humanos , Cromatina , Proteínas de Ligação a DNA/genética , Inativação Gênica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Cromossomo X/metabolismo , Inativação do Cromossomo X/genética
11.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38856171

RESUMO

The identification of protein complexes from protein interaction networks is crucial in the understanding of protein function, cellular processes and disease mechanisms. Existing methods commonly rely on the assumption that protein interaction networks are highly reliable, yet in reality, there is considerable noise in the data. In addition, these methods fail to account for the regulatory roles of biomolecules during the formation of protein complexes, which is crucial for understanding the generation of protein interactions. To this end, we propose a SpatioTemporal constrained RNA-protein heterogeneous network for Protein Complex Identification (STRPCI). STRPCI first constructs a multiplex heterogeneous protein information network to capture deep semantic information by extracting spatiotemporal interaction patterns. Then, it utilizes a dual-view aggregator to aggregate heterogeneous neighbor information from different layers. Finally, through contrastive learning, STRPCI collaboratively optimizes the protein embedding representations under different spatiotemporal interaction patterns. Based on the protein embedding similarity, STRPCI reweights the protein interaction network and identifies protein complexes with core-attachment strategy. By considering the spatiotemporal constraints and biomolecular regulatory factors of protein interactions, STRPCI measures the tightness of interactions, thus mitigating the impact of noisy data on complex identification. Evaluation results on four real PPI networks demonstrate the effectiveness and strong biological significance of STRPCI. The source code implementation of STRPCI is available from https://github.com/LI-jasm/STRPCI.


Assuntos
Mapas de Interação de Proteínas , RNA , RNA/metabolismo , RNA/química , Proteínas/metabolismo , Proteínas/química , Biologia Computacional/métodos , Algoritmos , Mapeamento de Interação de Proteínas/métodos , Humanos
12.
Trends Biochem Sci ; 46(11): 889-901, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34176739

RESUMO

Ribonucleoprotein (RNP) assembly typically begins during transcription when folding of the newly synthesized RNA is coupled with the recruitment of RNA-binding proteins (RBPs). Upon binding, the proteins induce structural rearrangements in the RNA that are crucial for the next steps of assembly. Focusing primarily on bacterial ribosome assembly, we discuss recent work showing that early RNA-protein interactions are more dynamic than previously supposed, and remain so, until sufficient proteins are recruited to each transcript to consolidate an entire domain of the RNP. We also review studies showing that stable assembly of an RNP competes against modification and processing of the RNA. Finally, we discuss how transcription sets the timeline for competing and cooperative RNA-RBP interactions that determine the fate of the nascent RNA. How this dance is coordinated is the focus of this review.


Assuntos
RNA Ribossômico , RNA , RNA/química , RNA Ribossômico/química , Proteínas de Ligação a RNA/metabolismo
13.
J Biol Chem ; : 107824, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39343008

RESUMO

RNA-binding proteins (RBPs) regulate totipotency, pluripotency maintenance, and induction. The intricacies of how they modulate these processes through their interaction with RNAs remain to be elucidated. Here we employed Targets of RBPs Identified By Editing (TRIBE) with single-cell resolution (scTRIBE) to profile the mRNA targets of the key pluripotency regulator LIN28A in mouse embryonic stem cells (ESCs), 2-cell embryo-like cells (2CLCs) and somatic cell reprogramming. LIN28A is known to act by controlling the maturation of the let-7 microRNA but, in addition, it binds to multiple mRNAs and influences their stability and translation efficiency. However, the mRNA targets of LIN28A in 2CLCs and reprogramming are unclear. Through quantitative single-cell analysis of the scTRIBE dataset, we observed a marked increase in the binding of LIN28A to mRNAs of ribosome biogenesis factors and a selected group of totipotency factors in 2CLCs within ESC cultures. Our results suggest that LIN28A extends the half-life of at least some of these mRNAs, providing new insights into its role in the totipotent state. We also uncovered the distinct trajectory-specific LIN28A-mRNA networks in reprogramming, helping explain how LIN28A facilitates the mesenchymal-to-epithelial transition and pluripotency acquisition. Our study not only clarifies the multifunctional role of LIN28A in these processes but also highlights the importance of decoding RNA-protein interactions at the single-cell level.

14.
RNA ; 29(6): 715-723, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36894192

RESUMO

CLIP technologies are now widely used to study RNA-protein interactions and many data sets are now publicly available. An important first step in CLIP data exploration is the visual inspection and assessment of processed genomic data on selected genes or regions and performing comparisons: either across conditions within a particular project, or incorporating publicly available data. However, the output files produced by data processing pipelines or preprocessed files available to download from data repositories are often not suitable for direct comparison and usually need further processing. Furthermore, to derive biological insight it is usually necessary to visualize a CLIP signal alongside other data such as annotations, or orthogonal functional genomic data (e.g., RNA-seq). We have developed a simple, but powerful, command-line tool: clipplotr, which facilitates these visual comparative and integrative analyses with normalization and smoothing options for CLIP data and the ability to show these alongside reference annotation tracks and functional genomic data. These data can be supplied as input to clipplotr in a range of file formats, which will output a publication quality figure. It is written in R and can both run on a laptop computer independently or be integrated into computational workflows on a high-performance cluster. Releases, source code, and documentation are freely available at https://github.com/ulelab/clipplotr.


Assuntos
Genômica , Software , Genoma , RNA-Seq
15.
RNA ; 29(11): 1772-1791, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37607742

RESUMO

RNA-binding proteins play important roles in bacterial gene regulation through interactions with both coding and noncoding RNAs. ProQ is a FinO-domain protein that binds a large set of RNAs in Escherichia coli, though the details of how ProQ binds these RNAs remain unclear. In this study, we used a combination of in vivo and in vitro binding assays to confirm key structural features of E. coli ProQ's FinO domain and explore its mechanism of RNA interactions. Using a bacterial three-hybrid assay, we performed forward genetic screens to confirm the importance of the concave face of ProQ in RNA binding. Using gel shift assays, we directly probed the contributions of ten amino acids on ProQ binding to seven RNA targets. Certain residues (R58, Y70, and R80) were found to be essential for binding of all seven RNAs, while substitutions of other residues (K54 and R62) caused more moderate binding defects. Interestingly, substitutions of two amino acids (K35, R69), which are evolutionarily variable but adjacent to conserved residues, showed varied effects on the binding of different RNAs; these may arise from the differing sequence context around each RNA's terminator hairpin. Together, this work confirms many of the essential RNA-binding residues in ProQ initially identified in vivo and supports a model in which residues on the conserved concave face of the FinO domain such as R58, Y70, and R80 form the main RNA-binding site of E. coli ProQ, while additional contacts contribute to the binding of certain RNAs.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Aminoácidos/metabolismo , RNA Bacteriano/metabolismo
16.
J Proteome Res ; 23(1): 149-160, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38043095

RESUMO

Host RNA binding proteins recognize viral RNA and play key roles in virus replication and antiviral mechanisms. SARS-CoV-2 generates a series of tiered subgenomic RNAs (sgRNAs), each encoding distinct viral protein(s) that regulate different aspects of viral replication. Here, for the first time, we demonstrate the successful isolation of SARS-CoV-2 genomic RNA and three distinct sgRNAs (N, S, and ORF8) from a single population of infected cells and characterize their protein interactomes. Over 500 protein interactors (including 260 previously unknown) were identified as associated with one or more target RNA. These included protein interactors unique to a single RNA pool and others present in multiple pools, highlighting our ability to discriminate between distinct viral RNA interactomes despite high sequence similarity. Individual interactomes indicated viral associations with cell response pathways, including regulation of cytoplasmic ribonucleoprotein granules and posttranscriptional gene silencing. We tested the significance of three protein interactors in these pathways (APOBEC3F, PPP1CC, and MSI2) using siRNA knockdowns, with several knockdowns affecting viral gene expression, most consistently PPP1CC. This study describes a new technology for high-resolution studies of SARS-CoV-2 RNA regulation and reveals a wealth of new viral RNA-associated host factors of potential functional significance to infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , RNA Subgenômico , RNA Viral/genética , RNA Viral/metabolismo , COVID-19/genética , Replicação Viral/genética , Genômica , Proteínas de Ligação a RNA/genética
17.
J Proteome Res ; 23(9): 4128-4138, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39078123

RESUMO

A critical part of the hepatitis B virus (HBV) life cycle is the packaging of the pregenomic RNA (pgRNA) into nucleocapsids. While this process is known to involve several viral elements, much less is known about the identities and roles of host proteins in this process. To better understand the role of host proteins, we isolated pgRNA and characterized its protein interactome in cells expressing either packaging-competent or packaging-incompetent HBV genomes. We identified over 250 host proteins preferentially associated with pgRNA from the packaging-competent version of the virus. These included proteins already known to support capsid formation, enhance viral gene expression, catalyze nucleocapsid dephosphorylation, and bind to the viral genome, demonstrating the ability of the approach to effectively reveal functionally significant host-virus interactors. Three of these host proteins, AURKA, YTHDF2, and ATR, were selected for follow-up analysis. RNA immunoprecipitation qPCR (RIP-qPCR) confirmed pgRNA-protein association in cells, and siRNA knockdown of the proteins showed decreased encapsidation efficiency. This study provides a template for the use of comparative RNA-protein interactome analysis in conjunction with virus engineering to reveal functionally significant host-virus interactions.


Assuntos
Vírus da Hepatite B , RNA Viral , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Humanos , RNA Viral/genética , RNA Viral/metabolismo , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Empacotamento do Genoma Viral/genética , Montagem de Vírus/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA
18.
RNA ; 28(11): 1469-1480, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36008134

RESUMO

RNA-binding proteins (RBPs) are key co- and post-transcriptional regulators of gene expression, playing a crucial role in many biological processes. Experimental methods like CLIP-seq have enabled the identification of transcriptome-wide RNA-protein interactions for select proteins; however, the time- and resource-intensive nature of these technologies call for the development of computational methods to complement their predictions. Here, we leverage recent, large-scale CLIP-seq experiments to construct a de novo predictor of RNA-protein interactions based on graph neural networks (GNN). We show that the GNN method allows us not only to predict missing links in an RNA-protein network, but to predict the entire complement of targets of previously unassayed proteins, and even to reconstruct the entire network of RNA-protein interactions in different conditions based on minimal information. Our results demonstrate the potential of modern machine learning methods to extract useful information on post-transcriptional regulation from large data sets.


Assuntos
Redes Neurais de Computação , RNA , Análise de Sequência de RNA/métodos , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Aprendizado de Máquina
19.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35348613

RESUMO

Characterizing RNA structures and functions have mostly been focused on 2D, secondary and 3D, tertiary structures. Recent advances in experimental and computational techniques for probing or predicting RNA solvent accessibility make this 1D representation of tertiary structures an increasingly attractive feature to explore. Here, we provide a survey of these recent developments, which indicate the emergence of solvent accessibility as a simple 1D property, adding to secondary and tertiary structures for investigating complex structure-function relations of RNAs.


Assuntos
RNA , Conformação de Ácido Nucleico , RNA/química , Solventes/química
20.
Arch Biochem Biophys ; 754: 109917, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38395123

RESUMO

As one of the oldest infectious diseases in the world, tuberculosis (TB) is the second most deadly infectious disease after COVID-19. Tuberculosis is caused by Mycobacterium tuberculosis (Mtb), which can attack various organs of the human body. Up to now, drug-resistant TB continues to be a public health threat. Pyrazinamide (PZA) is regarded as a sterilizing drug in the treatment of TB due to its distinct ability to target Mtb persisters. Previously we demonstrated that a D67N mutation in Mycobacterium tuberculosis polynucleotide phosphorylase (MtbPNPase, Rv2783c) confers resistance to PZA and Rv2783c is a potential target for PZA, but the mechanism leading to PZA resistance remains unclear. To gain further insight into the MtbPNPase, we determined the cryo-EM structures of apo Rv2783c, its mutant form and its complex with RNA. Our studies revealed the Rv2783c structure at atomic resolution and identified its enzymatic functional groups essential for its phosphorylase activities. We also investigated the molecular mechanisms underlying the resistance to PZA conferred by the mutation. Our research findings provide structural and functional insights enabling the development of new anti-tuberculosis drugs.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Polirribonucleotídeo Nucleotidiltransferase/genética , Microscopia Crioeletrônica , Amidoidrolases , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia , Pirazinamida/química , Pirazinamida/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Mutação , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA