Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(27): e2301067120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364130

RESUMO

RNA therapeutics have the potential to resolve a myriad of genetic diseases. Lipid nanoparticles (LNPs) are among the most successful RNA delivery systems. Expanding their use for the treatment of more genetic diseases hinges on our ability to continuously evolve the design of LNPs with high potency, cellular-specific targeting, and low side effects. Overcoming the difficulty of releasing cargo from endocytosed LNPs remains a significant hurdle. Here, we investigate the fundamental properties of nonviral RNA nanoparticles pertaining to the activation of topological transformations of endosomal membranes and RNA translocation into the cytosol. We show that, beyond composition, LNP fusogenicity can be prescribed by designing LNP nanostructures that lower the energetic cost of fusion and fusion-pore formation with a target membrane. The inclusion of structurally active lipids leads to enhanced LNP endosomal fusion, fast evasion of endosomal entrapment, and efficacious RNA delivery. For example, conserving the lipid make-up, RNA-LNPs having cuboplex nanostructures are significantly more efficacious at endosomal escape than traditional lipoplex constructs.


Assuntos
Nanopartículas , RNA , RNA/genética , Lipídeos/química , Nanopartículas/química , Endossomos , RNA Interferente Pequeno/genética
2.
Mol Ther ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702886

RESUMO

In the rapidly evolving landscape of medical research, the emergence of RNA-based therapeutics is paradigm shifting. It is mainly driven by the molecular adaptability and capacity to provide precision in targeting. The coronavirus disease 2019 pandemic crisis underscored the effectiveness of the mRNA therapeutic development platform and brought it to the forefront of RNA-based interventions. These RNA-based therapeutic approaches can reshape gene expression, manipulate cellular functions, and correct the aberrant molecular processes underlying various diseases. The new technologies hold the potential to engineer and deliver tailored therapeutic agents to tackle genetic disorders, cancers, and infectious diseases in a highly personalized and precisely tuned manner. The review discusses the most recent advancements in the field of mRNA therapeutics for cancer treatment, with a focus on the features of the most utilized RNA-based therapeutic interventions, current pre-clinical and clinical developments, and the remaining challenges in delivery strategies, effectiveness, and safety considerations.

3.
Nano Lett ; 24(3): 920-928, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207109

RESUMO

Organic nanoparticles are used in nanomedicine, including for cancer treatment and some types of COVID-19 vaccines. Here, we demonstrate the scalable, rapid, reproducible, and cost-effective synthesis of three model organic nanoparticle formulations relevant to nanomedicine applications. We employed a custom-made, low-cost fluid mixer device constructed from a commercially available three-dimensional printer. We investigated how systematically changing aqueous and organic volumetric flow rate ratios determined liposome, polymer nanoparticle, and solid lipid nanoparticle sizes, size distributions, and payload encapsulation efficiencies. By manipulating inlet volumes, we synthesized organic nanoparticles with encapsulation efficiencies approaching 100% for RNA-based payloads. The synthesized organic nanoparticles were safe and effective at the cell culture level, as demonstrated by various assays. Such cost-effective synthesis approaches could potentially increase the accessibility to clinically relevant organic nanoparticle formulations for personalized nanomedicine applications at the point of care, especially in nonhospital and low-resource settings.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Humanos , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Vacinas contra COVID-19 , Análise Custo-Benefício , Lipossomos
4.
Nano Lett ; 24(4): 1376-1384, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232332

RESUMO

Ribonucleic acids (RNAs) enable disease-related gene inhibition, expression, and editing and represent promising therapeutics in various diseases. The efficacy of RNA relies heavily on the presence of a secure and effective delivery system. Herein, we found that RNA could be hydrophobized by cationic lipid and ionizable lipid and conveniently coassemble with amphiphilic polymer to achieve micelle-like nanoparticles (MNP). The results of the study indicate that MNP exhibits a high level of efficiency in delivering RNA. Besides, the MNP encapsulating siRNA that targets CD47 and PD-L1 remarkably blocked these immune checkpoints in a melanoma tumor model and elicited a robust immune response. Moreover, the MNP encapsulating the mRNA of OVA achieved antigen translation and presentation, leading to an effective antitumor immunoprophylaxis outcome against OVA-expressing melanoma model. Our findings suggest that RNA hydrophobization could serve as a viable approach for delivering RNA, thereby facilitating the exploration of RNA therapy in disease treatment.


Assuntos
Melanoma , Nanopartículas , Neoplasias , Humanos , Imunoterapia , Nanopartículas/uso terapêutico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Micelas , Lipídeos , Neoplasias/terapia
5.
Biochem Biophys Res Commun ; 729: 150372, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38981400

RESUMO

The development of lipid nanoparticles (LNPs) has enabled the clinical application of small interfering ribonucleic acid (siRNA)-based therapies. Accordingly, various unique ionizable lipids have been explored for efficient siRNA delivery. However, safety concerns related to the structure of ionizable lipids have been raised. Here, we developed a pH-responsive dipeptide-conjugated lipid (DPL) for efficient, high safety siRNA delivery. We synthesized a DPL library by varying the dipeptide sequence and established a strong correlation between the knockdown efficiency of the DPL-based LNPs and the dipeptide sequence. The LNPs prepared with a DPL containing arginine (R) and glutamic acid (E) (DPL-ER) exhibited the highest knockdown efficiency. In addition, the DPL-ER-based LNPs with relatively long lipid tails (DPL-ER-C22:C22) exhibited a higher knockdown efficiency than those with short ones (DPL-ER-18:C18). The zeta potential of the DPL-ER-C22:C22-based LNPs increased as the pH decreased from 7.4 (physiological condition) to 5.5 (endosomal condition). Importantly, the DPL-ER-C22:C22-based LNPs exhibited a higher knockdown efficiency than the LNPs prepared using commercially available ionizable lipids. These results suggest that the DPL-based LNPs are safe and efficient siRNA delivery carriers.

6.
Mol Biol Rep ; 51(1): 627, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717532

RESUMO

MicroRNAs (miRNAs) are short, non-coding single-stranded RNA molecules approximately 22 nucleotides in length, intricately involved in post-transcriptional gene expression regulation. Over recent years, researchers have focused keenly on miRNAs, delving into their mechanisms in various diseases such as cancers. Among these, miR-26a emerges as a pivotal player in respiratory ailments such as pneumonia, idiopathic pulmonary fibrosis, lung cancer, asthma, and chronic obstructive pulmonary disease. Studies have underscored the significance of miR-26a in the pathogenesis and progression of respiratory diseases, positioning it as a promising therapeutic target. Nevertheless, several challenges persist in devising medical strategies for clinical trials involving miR-26a. In this review, we summarize the regulatory role and significance of miR-26a in respiratory diseases, and we analyze and elucidate the challenges related to miR-26a druggability, encompassing issues such as the efficiency of miR-26a, delivery, RNA modification, off-target effects, and the envisioned therapeutic potential of miR-26a in clinical settings.


Assuntos
Regulação da Expressão Gênica , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Animais , Doenças Respiratórias/genética , Doenças Respiratórias/terapia , Doenças Respiratórias/metabolismo , Asma/genética , Asma/terapia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/terapia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/terapia , Fibrose Pulmonar Idiopática/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia
7.
Mol Ther ; 31(5): 1418-1436, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37016578

RESUMO

Cancer cachexia is a multifactorial syndrome characterized by a significant loss of skeletal muscle, which negatively affects the quality of life. Inhibition of myostatin (Mstn), a negative regulator of skeletal muscle growth and differentiation, has been proven to preserve muscle mass in muscle atrophy diseases, including cachexia. However, myostatin inhibitors have repeatedly failed clinical trials because of modest therapeutic effects and side effects due to the poor efficiency and toxicity of existing delivery methods. Here, we describe a novel method for delivering Mstn siRNA to skeletal muscles using red blood cell-derived extracellular vesicles (RBCEVs) in a cancer cachectic mouse model. Our data show that RBCEVs are taken up by myofibers via intramuscular administration. Repeated intramuscular administrations with RBCEVs allowed the delivery of siRNAs, thereby inhibiting Mstn, increasing muscle growth, and preventing cachexia in cancer-bearing mice. We observed the same therapeutic effects when delivering siRNAs against malonyl-CoA decarboxylase, an enzyme driving dysfunctional fatty acid metabolism in skeletal muscles during cancer cachexia. We demonstrate that intramuscular siRNA delivery by RBCEVs is safe and non-inflammatory. Hence, this method is useful to reduce the therapeutic dose of siRNAs, to avoid toxicity and off-target effects caused by systemic administration of naked siRNAs at high doses.


Assuntos
Miostatina , Neoplasias , Camundongos , Animais , Miostatina/metabolismo , RNA Interferente Pequeno/metabolismo , Caquexia/etiologia , Caquexia/terapia , Caquexia/metabolismo , Qualidade de Vida , Músculo Esquelético/metabolismo , Neoplasias/complicações , Neoplasias/terapia , Neoplasias/metabolismo , Atrofia Muscular , RNA de Cadeia Dupla
8.
Mol Ther ; 31(6): 1647-1660, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-36895161

RESUMO

Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The 2789+5G>A CFTR mutation is a quite frequent defect causing an aberrant splicing and a non-functional CFTR protein. Here we used a CRISPR adenine base editing (ABE) approach to correct the mutation in the absence of DNA double-strand breaks (DSB). To select the strategy, we developed a minigene cellular model reproducing the 2789+5G>A splicing defect. We obtained up to 70% editing in the minigene model by adapting the ABE to the PAM sequence optimal for targeting 2789+5G>A with a SpCas9-NG (NG-ABE). Nonetheless, the on-target base correction was accompanied by secondary (bystander) A-to-G conversions in nearby nucleotides, which affected the wild-type CFTR splicing. To decrease the bystander edits, we used a specific ABE (NG-ABEmax), which was delivered as mRNA. The NG-ABEmax RNA approach was validated in patient-derived rectal organoids and bronchial epithelial cells showing sufficient gene correction to recover the CFTR function. Finally, in-depth sequencing revealed high editing precision genome-wide and allele-specific correction. Here we report the development of a base editing strategy to precisely repair the 2789+5G>A mutation resulting in restoration of the CFTR function, while reducing bystander and off-target activities.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , RNA/metabolismo , Adenina , Fibrose Cística/genética , Fibrose Cística/terapia , Fibrose Cística/metabolismo , Splicing de RNA , Mutação , Edição de Genes/métodos
9.
J Nanobiotechnology ; 22(1): 391, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965509

RESUMO

BACKGROUND: Prostate cancer (PCa) has a high incidence in men worldwide, and almost all PCa patients progress to the androgen-independent stage which lacks effective treatment measures. PTENP1, a long non-coding RNA, has been shown to suppress tumor growth through the rescuing of PTEN expression via a competitive endogenous RNA (ceRNA) mechanism. However, PTENP1 was limited to be applied in the treatment of PCa for the reason of rapid enzymatic degradation, poor intracellular uptake, and excessively long base sequence to be synthesized. Considering the unique advantages of artificial nanomaterials in drug loading and transport, black phosphorus (BP) nanosheet was employed as a gene-drug carrier in this study. RESULTS: The sequence of PTENP1 was adopted as a template which was randomly divided into four segments with a length of about 1000 nucleotide bases to synthesize four different RNA fragments as gene drugs, and loaded onto polyethyleneimine (PEI)-modified BP nanosheets to construct BP-PEI@RNA delivery platforms. The RNAs could be effectively delivered into PC3 cells by BP-PEI nanosheets and elevating PTEN expression by competitive binding microRNAs (miRNAs) which target PTEN mRNA, ultimately exerting anti-tumor effects. CONCLUSIONS: Therefore, this study demonstrated that BP-PEI@RNAs is a promising gene therapeutic platform for PCa treatment.


Assuntos
Nanoestruturas , PTEN Fosfo-Hidrolase , Fósforo , Neoplasias da Próstata , Masculino , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Fósforo/química , Nanoestruturas/química , MicroRNAs/genética , Linhagem Celular Tumoral , Células PC-3 , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Polietilenoimina/química , Animais , Técnicas de Transferência de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , RNA Endógeno Competitivo
10.
J Nanobiotechnology ; 22(1): 392, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965606

RESUMO

Pancreatic cancer, predominantly pancreatic ductal adenocarcinoma (PDAC), remains a highly lethal malignancy with limited therapeutic options and a dismal prognosis. By targeting the underlying molecular abnormalities responsible for PDAC development and progression, gene therapy offers a promising strategy to overcome the challenges posed by conventional radiotherapy and chemotherapy. This study sought to explore the therapeutic potential of small activating RNAs (saRNAs) specifically targeting the CCAAT/enhancer-binding protein alpha (CEBPA) gene in PDAC. To overcome the challenges associated with saRNA delivery, tetrahedral framework nucleic acids (tFNAs) were rationally engineered as nanocarriers. These tFNAs were further functionalized with a truncated transferrin receptor aptamer (tTR14) to enhance targeting specificity for PDAC cells. The constructed tFNA-based saRNA formulation demonstrated exceptional stability, efficient saRNA release ability, substantial cellular uptake, biocompatibility, and nontoxicity. In vitro experiments revealed successful intracellular delivery of CEBPA-saRNA utilizing tTR14-decorated tFNA nanocarriers, resulting in significant activation of tumor suppressor genes, namely, CEBPA and its downstream effector P21, leading to notable inhibition of PDAC cell proliferation. Moreover, in a mouse model of PDAC, the tTR14-decorated tFNA-mediated delivery of CEBPA-saRNA effectively upregulated the expression of the CEBPA and P21 genes, consequently suppressing tumor growth. These compelling findings highlight the potential utility of saRNA delivered via a designed tFNA nanocarrier to induce the activation of tumor suppressor genes as an innovative therapeutic approach for PDAC.


Assuntos
Aptâmeros de Nucleotídeos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Receptores da Transferrina , Animais , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Receptores da Transferrina/metabolismo , Camundongos , Linhagem Celular Tumoral , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proliferação de Células/efeitos dos fármacos , Terapia Genética/métodos , RNA Interferente Pequeno/farmacologia , Camundongos Nus
11.
Handb Exp Pharmacol ; 284: 329-339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37017791

RESUMO

The approval of mRNA-containing lipid nanoparticles (LNPs) for use in a vaccine against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the clinical utility of RNA-loaded nanocapsules has stimulated a rapid acceleration in research in this area. The development of mRNA-containing LNP vaccines has been rapid, not only because of regulatory adjustments, but also to the advances made in nucleic acid delivery as the result of efforts by many basic researchers. RNA functions, not only in the nucleus and cytoplasm, but also in mitochondria, which have their own genomic apparatus. Mitochondrial diseases caused by mutations or defects in the mitochondrial genome, mitochondrial DNA (mtDNA) are intractable and are mainly treated symptomatically, but gene therapy as a fundamental treatment is expected to soon be a reality. To realize this therapy, a drug delivery system (DDS) that delivers nucleic acids including RNA to mitochondria is required, but efforts in this area have been limited compared to research targeting the nucleus and cytoplasm. This contribution provides an overview of mitochondria-targeted gene therapy strategies and discusses studies that have attempted to validate mitochondria-targeted RNA delivery therapies. We also present the results of 'RNA delivery to mitochondria' based on the use of our mitochondria-targeted DDS (MITO-Porter) that was developed in our laboratory.


Assuntos
Mitocôndrias , RNA , Humanos , Mitocôndrias/genética , Lipossomos , Sistemas de Liberação de Medicamentos , DNA Mitocondrial/genética , RNA Mensageiro
12.
Handb Exp Pharmacol ; 284: 389-411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37861719

RESUMO

High molecular weight actives and cell-based therapy have the potential to revolutionize the prophylaxis and therapy of severe diseases. Yet, the size and nature of the agents - proteins, nucleic acids, cells - challenge drug delivery and thus formulation development. Moreover, off-target effects may result in severe adverse drug reactions. This makes delivery and targeting an essential component of high-end drug development. Loading to nanoparticles facilitates delivery and enables targeted mRNA vaccines and tumor therapeutics. Stem cell therapy opens up a new horizon in diabetes type 1 among other domains which may enhance the quality of life and life expectancy. Cell encapsulation protects transplants against the recipient's immune system, may ensure long-term efficacy, avoid severe adverse reactions, and simplify the management of rare and fatal diseases.The knowledge gained so far encourages to widen the spectrum of potential indications. Co-development of the active agent and the vehicle has the potential to accelerate drug research. One recommended starting point is the use of computational approaches. Transferability of preclinical data to humans will benefit from performing studies first on validated human 3D disease models reflecting the target tissue, followed by studies on validated animal models. This makes approaching a new level in drug development a multidisciplinary but ultimately worthwhile and attainable challenge. Intense monitoring of the patients after drug approval and periodic reporting to physicians and scientists remain essential for the safe use of drugs especially in rare diseases and pave future research.


Assuntos
Neoplasias , Qualidade de Vida , Animais , Humanos , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Doença Crônica
13.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941681

RESUMO

To realize RNA interference (RNAi) therapeutics, it is necessary to deliver therapeutic RNAs (such as small interfering RNA or siRNA) into cell cytoplasm. A major challenge of RNAi therapeutics is the endosomal entrapment of the delivered siRNA. In this study, we developed a family of delivery vehicles called Janus base nanopieces (NPs). They are rod-shaped nanoparticles formed by bundles of Janus base nanotubes (JBNTs) with RNA cargoes incorporated inside via charge interactions. JBNTs are formed by noncovalent interactions of small molecules consisting of a base component mimicking DNA bases and an amino acid side chain. NPs presented many advantages over conventional delivery materials. NPs efficiently entered cells via macropinocytosis similar to lipid nanoparticles while presenting much better endosomal escape ability than lipid nanoparticles; NPs escaped from endosomes via a "proton sponge" effect similar to cationic polymers while presenting significant lower cytotoxicity compared to polymers and lipids due to their noncovalent structures and DNA-mimicking chemistry. In a proof-of-concept experiment, we have shown that NPs are promising candidates for antiviral delivery applications, which may be used for conditions such as COVID-19 in the future.


Assuntos
DNA/química , Sistemas de Liberação de Medicamentos , Endossomos/metabolismo , Nanoestruturas/administração & dosagem , Aminoácidos/química , Sobrevivência Celular , Endocitose , Humanos , Nanoestruturas/química , Nanotubos de Peptídeos/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Terapêutica com RNAi
14.
Plant J ; 109(5): 1199-1212, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34882879

RESUMO

In plants, small interfering RNAs (siRNAs) are a quintessential class of RNA interference (RNAi)-inducing molecules produced by the endonucleolytic cleavage of double-stranded RNAs (dsRNAs). In order to ensure robust RNAi, siRNAs are amplified through a positive feedback mechanism called transitivity. Transitivity relies on RNA-DIRECTED RNA POLYMERASE 6 (RDR6)-mediated dsRNA synthesis using siRNA-targeted RNA. The newly synthesized dsRNA is subsequently cleaved into secondary siRNAs by DICER-LIKE (DCL) endonucleases. Just like primary siRNAs, secondary siRNAs are also loaded into ARGONAUTE proteins (AGOs) to form an RNA-induced silencing complex reinforcing the cleavage of the target RNA. Although the molecular players underlying transitivity are well established, the mode of action of transitivity remains elusive. In this study, we investigated the influence of primary target sites on transgene silencing and transitivity using the green fluorescent protein (GFP)-expressing Nicotiana benthamiana 16C line, high-pressure spraying protocol, and synthetic 22-nucleotide (nt) long siRNAs. We found that the 22-nt siRNA targeting the 3' of the GFP transgene was less efficient in inducing silencing when compared with the siRNAs targeting the 5' and middle region of the GFP. Moreover, sRNA sequencing of locally silenced leaves showed that the amount but not the profile of secondary RNAs is shaped by the occupancy of the primary siRNA triggers on the target RNA. Our findings suggest that RDR6-mediated dsRNA synthesis is not primed by primary siRNAs and that dsRNA synthesis appears to be generally initiated at the 3'-end of the target RNA.


Assuntos
RNA de Cadeia Dupla , Complexo de Inativação Induzido por RNA , Proteínas de Fluorescência Verde/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Polimerase Dependente de RNA/genética , Complexo de Inativação Induzido por RNA/genética
15.
Small ; : e2306134, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38145340

RESUMO

During pregnancy, the risk of maternal and fetal adversities increases due to physiological changes, genetic predispositions, environmental factors, and infections. Unfortunately, treatment options are severely limited because many essential interventions are unsafe, inaccessible, or lacking in sufficient scientific data to support their use. One potential solution to this challenge may lie in emerging RNA therapeutics for gene therapy, protein replacement, maternal vaccination, fetal gene editing, and other prenatal treatment applications. In this review, the current landscape of RNA platforms and non-viral RNA delivery technologies that are under active development for administration during pregnancy is explored. Advancements of pregnancy-specific RNA drugs against SARS-CoV-2, Zika, influenza, preeclampsia, and for in-utero gene editing are discussed. Finally, this study highlights bottlenecks that are impeding translation efforts of RNA therapies, including the lack of accurate cell-based and animal models of human pregnancy and concerns related to toxicity and immunogenicity during pregnancy. Overcoming these challenges will facilitate the rapid development of this new class of pregnancy-safe drugs.

16.
Small ; 19(31): e2207204, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36840641

RESUMO

Small interfering RNA (siRNA)-based gene therapy represents a promising strategy for tumor treatment. Novel gene vectors that can achieve targeted delivery of siRNA to the tumor cells without causing any side effects are urgently needed. To this end, the large amino acid mimicking carbon dots with guanidinium functionalization (LAAM GUA-CDs) are designed and synthesized by choosing arginine and dopamine hydrochloride as precursors. LAAM GUA-CDs can load siRNA through the multiple hydrogen bonds between their guanidinium groups and phosphate groups in siRNA. Meanwhile, the amino acid groups at the edges of LAAM GUA-CDs endow them the capacity to target tumors. After loading siBcl-2 as a therapeutic agent, LAAM GUA-CDs/siBcl-2 has a high tumor inhibition rate of up to 68%, which is twice more than that of commercial Lipofectamine 2000. Furthermore, LAAM GUA-CDs do not cause side effect during antitumor treatment owing to their high tumor-targeting ability, thus providing a versatile strategy for tumor-targeted siRNA delivery and cancer therapy.


Assuntos
Acetato de Metadil , Neoplasias , Humanos , RNA Interferente Pequeno , Guanidina , Aminoácidos , Carbono/química , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Terapia Genética
17.
Mol Ther ; 30(11): 3450-3461, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35933584

RESUMO

MicroRNA (miRNAs) are pleiotropic post-transcriptional modulators of gene expression. Their inherently pleiotropic nature makes miRNAs strong candidates for the development of cancer therapeutics, yet despite their potential, there remains a challenge to deliver nucleic acid-based therapies into cancer cells. We developed a novel approach to modify miRNAs by replacing the uracil bases with 5-fluorouracil (5-FU) in the guide strand of tumor suppressor miRNAs, thereby combining the therapeutic effect of 5-FU with tumor-suppressive effect of miRNAs to create a potent, multi-targeted therapeutic molecule without altering its native RNAi function. To demonstrate the general applicability of this approach to other tumor-suppressive miRNAs, we screened a panel of 12 novel miRNA mimetics in several cancer types, including leukemia, breast, gastric, lung, and pancreatic cancer. Our results show that 5-FU-modified miRNA mimetics have increased potency (low nanomolar range) in inhibiting cancer cell proliferation and that these mimetics can be delivered into cancer cells without delivery vehicle both in vitro and in vivo, thus representing significant advancements in the development of therapeutic miRNAs for cancer. This work demonstrates the potential of fluoropyrimidine modifications that can be broadly applicable and may serve as a platform technology for future miRNA and nucleic acid-based therapeutics.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Genes Supressores de Tumor , Fluoruracila/farmacologia , Neoplasias Pancreáticas/genética , Interferência de RNA , Regulação Neoplásica da Expressão Gênica
18.
Nano Lett ; 22(22): 8801-8809, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36251255

RESUMO

Pancreatic cancer immunotherapy is becoming a promising strategy for improving the survival rate of postsurgical patients. However, the low response rate to immunotherapy suggests a low number of antigen-specific T cells and a high number of immunosuppressive tumor-associated macrophages in the pancreatic tumor microenvironment. Herein, we developed an in situ injectable thermosensitive chitosan hydrogel loaded with lipid-immune regulatory factor 5 (IRF5) mRNA/C-C chemokine ligand 5 (CCL5) siRNA (LPR) nanoparticle complexes (LPR@CHG) that reprogram the antitumoral immune niche. The LPR@CHG hydrogel upregulates IRF5 and downregulates CCL5 secretion, which contribute to a significant increase in M1 phenotype macrophages. Tumor growth is controlled by effective M1 phenotype macrophage that initiate T cell-mediated immune responses. Overall, the LPR@CHG hydrogel is expected to be a meaningful immunotherapy platform that can reshape the immunosuppressive tumor microenvironment and improve the efficacy of current pancreatic immunotherapies while minimizing systemic toxicity.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , Microambiente Tumoral , Hidrogéis , Imunoterapia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Fatores Imunológicos , Fatores Reguladores de Interferon , Neoplasias Pancreáticas
19.
Nano Lett ; 22(23): 9621-9629, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36459186

RESUMO

Owing to the high surface area and porosity, metal-organic frameworks (MOFs) could be utilized as both nanocarriers of biopharmaceuticals and nanoreactors to organize cascade biological reactions with great potential in cancer treatment. However, nanoscale MOFs suitable for biomedical applications rely on harsh preparation conditions. Here, we utilized tryptophan to modulate the morphology and optical properties of zeolitic imidazolate framework-8 (ZIF-8) as nanocarrier to efficiently encapsulate the enzyme and mRNA. Under room temperature in an aqueous solution, tryptophan would coordinate with zinc ions to form ZIF-8:Trp with a decreased size from the µm range to sub-200 nm. In addition, cargo release could be monitored in real time via fluorescence red-shift effects. Besides being used as nanocarriers of biomolecules, ZIF-8:Trp could also be utilized as nanoreactors to induce cascade reactions to produce reactive oxygen and nitrogen species. Overall, this nanosized ZIF-8:Trp could provide a new strategy for preparation of cascade bioreactions and provide new insight for gas therapy.


Assuntos
Estruturas Metalorgânicas , Zeolitas , Triptofano , Nitrogênio , Oxigênio
20.
Nano Lett ; 22(22): 8852-8859, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36346801

RESUMO

Hyperthermia of superparamagnetic nanoparticles driven by Néel relaxation in an alternating magnetic field (AMF) has been studied in biomedical areas; however, Brownian motion, induced by another magnetic relaxation mechanism, has not been explored extensively despite its potential in intracellular mechanoresponsive applications. We investigated whether superparamagnetic cage-shaped iron oxide nanoparticles (IO-nanocages), previously demonstrated to carry payloads inside their cavities for drug delivery, can generate Brownian motion by tuning the nanoparticle size at 335 kHz AMF frequency. The motivation of this work is to examine the magnetically driven Brownian motion for the delivery of nanoparticles allowing escape from endosomes before digestion in lysosomes and efficient delivery of siRNA cargoes to the cytoplasm. Superconducting quantum interference device (SQUID) measurements reveal the nanocage size dependence of Brownian relaxation, and a magnetic Brownian motion of 20 nm IO-nanocages improved the efficiency of siRNA delivery while endosomal membranes were observed to be compromised to release IO-nanocages in AMFs during the delivery process.


Assuntos
Compostos Férricos , Hipertermia Induzida , RNA Interferente Pequeno/genética , Campos Magnéticos , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA