Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 68(4): 673-685.e6, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149595

RESUMO

Vms1 translocates to damaged mitochondria in response to stress, whereupon its binding partner, Cdc48, contributes to mitochondrial protein homeostasis. Mitochondrial targeting of Vms1 is mediated by its conserved mitochondrial targeting domain (MTD), which, in unstressed conditions, is inhibited by intramolecular binding to the Vms1 leucine-rich sequence (LRS). Here, we report a 2.7 Å crystal structure of Vms1 that reveals that the LRS lies in a hydrophobic groove in the autoinhibited MTD. We also demonstrate that the oxidized sterol, ergosterol peroxide, is necessary and sufficient for Vms1 localization to mitochondria, through binding the MTD in an interaction that is competitive with binding to the LRS. These data support a model in which stressed mitochondria generate an oxidized sterol receptor that recruits Vms1 to support mitochondrial protein homeostasis.


Assuntos
Ergosterol/análogos & derivados , Mitocôndrias , Transporte Proteico , Saccharomyces cerevisiae , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Ergosterol/metabolismo , Mitocôndrias/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Domínios Proteicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193955

RESUMO

In search of redox mechanisms in breast cancer, we uncovered a striking role for glutathione peroxidase 2 (GPx2) in oncogenic signaling and patient survival. GPx2 loss stimulates malignant progression due to reactive oxygen species/hypoxia inducible factor-α (HIF1α)/VEGFA (vascular endothelial growth factor A) signaling, causing poor perfusion and hypoxia, which were reversed by GPx2 reexpression or HIF1α inhibition. Ingenuity Pathway Analysis revealed a link between GPx2 loss, tumor angiogenesis, metabolic modulation, and HIF1α signaling. Single-cell RNA analysis and bioenergetic profiling revealed that GPx2 loss stimulated the Warburg effect in most tumor cell subpopulations, except for one cluster, which was capable of oxidative phosphorylation and glycolysis, as confirmed by coexpression of phosphorylated-AMPK and GLUT1. These findings underscore a unique role for redox signaling by GPx2 dysregulation in breast cancer, underlying tumor heterogeneity, leading to metabolic plasticity and malignant progression.


Assuntos
Neoplasias da Mama/metabolismo , Plasticidade Celular/fisiologia , Glutationa Peroxidase/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Glutationa Peroxidase/genética , Glutationa Peroxidase/fisiologia , Glicólise , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metabolismo/fisiologia , Camundongos , Camundongos Nus , Neovascularização Patológica/genética , Oxirredução , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Biol Chem ; 299(11): 105308, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778730

RESUMO

Nuclear factor kappa B (NF-κB) activity is regulated by various posttranslational modifications, of which Ser276 phosphorylation of RelA/p65 is particularly impacted by reactive oxygen species (ROS). This modification is responsible for selective upregulation of a subset of NF-κB targets; however, the precise mechanism remains elusive. ROS have the ability to modify cellular molecules including DNA. One of the most common oxidation products is 8-oxo-7,8-dihydroguanine (8-oxoGua), which is repaired by the 8-oxoguanine DNA glycosylase1 (OGG1)-initiated base excision repair pathway. Recently, a new function of OGG1 has been uncovered. OGG1 binds to 8-oxoGua, facilitating the occupancy of NF-κB at promoters and enhancing transcription of pro-inflammatory cytokines and chemokines. In the present study, we demonstrated that an interaction between DNA-bound OGG1 and mitogen-and stress-activated kinase 1 is crucial for RelA/p65 Ser276 phosphorylation. ROS scavenging or OGG1 depletion/inhibition hindered the interaction between mitogen-and stress-activated kinase 1 and RelA/p65, thereby decreasing the level of phospho-Ser276 and leading to significantly lowered expression of ROS-responsive cytokine/chemokine genes, but not that of Nfkbis. Blockade of OGG1 binding to DNA also prevented promoter recruitment of RelA/p65, Pol II, and p-RNAP II in a gene-specific manner. Collectively, the data presented offer new insights into how ROS signaling dictates NF-κB phosphorylation codes and how the promoter-situated substrate-bound OGG1 is exploited by aerobic mammalian cells for timely transcriptional activation of ROS-responsive genes.


Assuntos
DNA Glicosilases , NF-kappa B , Animais , DNA/metabolismo , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Mamíferos/metabolismo , Mitógenos , NF-kappa B/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Humanos , Camundongos , Linhagem Celular , Camundongos Knockout
4.
J Exp Bot ; 75(15): 4589-4598, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38833316

RESUMO

Reactive oxygen species (ROS) are essential signaling molecules that enable cells to respond rapidly to a range of stimuli. The ability of plants to recognize various stressors, incorporate a variety of environmental inputs, and initiate stress-response networks depends on ROS. Plants develop resilience and defensive systems as a result of these processes. Root hairs are central components of root biology since they increase the surface area of the root, anchor it in the soil, increase its ability to absorb water and nutrients, and foster interactions between microorganisms. In this review, we specifically focused on root hair cells and we highlighted the identification of ROS receptors, important new regulatory hubs that connect ROS production, transport, and signaling in the context of two hormonal pathways (auxin and ethylene) and under low temperature environmental input related to nutrients. As ROS play a crucial role in regulating cell elongation rates, root hairs are rapidly gaining traction as a very valuable single plant cell model for investigating ROS homeostasis and signaling. These promising findings might soon facilitate the development of plants and roots that are more resilient to environmental stressors.


Assuntos
Raízes de Plantas , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Transdução de Sinais
5.
Plant Cell Rep ; 43(9): 213, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133336

RESUMO

Micronutrients like iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), boron (B), nickel (Ni), and molybdenum (Mo) perform significant roles in the regulation of plant metabolism, growth, and development. Micronutrients, namely Fe, Zn, Cu, Mn, and Ni, are involved in oxidative stress and antioxidant defense as they are cofactors or activators of various antioxidant enzymes, viz., superoxide dismutase (Fe, Cu/Zn, Mn, and Ni), catalase (Fe), and ascorbate peroxidase (Fe). An effort has been made to incorporate recent advances along with classical work done on the micronutrient deficiency-induced oxidative stress and associated antioxidant responses of plants. Deficiency of a micronutrient produces ROS in the cellular compartments. Enzymatic and non-enzymatic antioxidant defense systems are often modulated by micronutrient deficiency to regulate redox balance and scavenge deleterious ROS for the safety of cellular constituents. ROS can strike cellular constituents such as lipids, proteins, and nucleic acids and can destruct cellular membranes and proteins. ROS might act as a signaling molecule and activate the antioxidant proteins by interacting with signaling partners such as respiratory burst oxidase homolog (RBOH), G-proteins, Ca2+, mitogen activated protein kinases (MAPKs), and various transcription factors (TFs). Opinions on probable ROS signaling under micronutrient deficiency have been described in this review. However, further research is required to decipher micronutrient deficiency-induced ROS generation, perception, and associated downstream signaling events, leading to the development of antioxidant responses in plants.


Assuntos
Micronutrientes , Estresse Oxidativo , Plantas , Espécies Reativas de Oxigênio , Micronutrientes/metabolismo , Micronutrientes/deficiência , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Transdução de Sinais
6.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176003

RESUMO

Participating in both biotic and abiotic stress responses, plant-specific class III peroxidases (PERs) show promise as candidates for crop improvement. The multigenic PER family is known to take part in diverse functions, such as lignin formation and defense against pathogens. Traditionally linked to hydrogen peroxide (H2O2) consumption, PERs can also produce reactive oxygen species (ROS), essential in tissue development, pathogen defense and stress signaling. The amino acid sequences of both orthologues and paralogues of PERs are highly conserved, but discovering correlations between sequence differences and their functional diversity has proven difficult. By combining meta-analysis of transcriptomic data and sequence alignments, we discovered a correlation between three key amino acid positions and gene expression in response to biotic and abiotic stresses. Phylogenetic analysis revealed evolutionary pressure on these amino acids toward stress responsiveness. Using AlphaFold modeling, we found unique interdomain and protein-heme interactions involving those key amino acids in stress-induced PERs. Plausibly, these structural interactions may act as "gate keepers" by preventing larger substrates from accessing the heme and thereby shifting PER function from consumption to the production of ROS.


Assuntos
Peroxidase , Transcriptoma , Espécies Reativas de Oxigênio/metabolismo , Peroxidase/metabolismo , Filogenia , Peróxido de Hidrogênio/metabolismo , Estresse Fisiológico/genética , Peroxidases/genética , Peroxidases/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Molecules ; 28(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37446578

RESUMO

Although iron is essential for all forms of life, it is also potentially toxic to cells as the increased and unregulated iron uptake can catalyze the Fenton reaction to produce reactive oxygen species (ROS), leading to lipid peroxidation of membranes, oxidation of proteins, cleavage of DNA and even activation of apoptotic cell death pathways. We demonstrate that Fe(hinok)3 (hinok = 2-hydroxy-4-isopropyl-2,4,6-cycloheptatrien-1-one), a neutral Fe(III) complex with high lipophilicity is capable of bypassing the regulation of iron trafficking to disrupt cellular iron homeostasis; thus, harnessing remarkable anticancer activity against a panel of five different cell lines, including Pt-sensitive ovarian cancer cells (A2780; IC50 = 2.05 ± 0.90 µM or 1.20 µg/mL), Pt-resistant ovarian cancer cells (A2780cis; IC50 = 0.92 ± 0.73 µM or 0.50 µg/mL), ovarian cancer cells (SKOV-3; IC50 = 1.23 ± 0.01 µM or 0.67 µg/mL), breast cancer cells (MDA-MB-231; IC50 = 3.83 ± 0.12 µM or 2.0 µg/mL) and lung cancer cells (A549; IC50 = 1.50 ± 0.32 µM or 0.82 µg/mL). Of great significance is that Fe(hinok)3 exhibits unusual selectivity toward the normal HEK293 cells and the ability to overcome the Pt resistance in the Pt-resistant mutant ovarian cancer cells of A2780cis.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Compostos Férricos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Células HEK293 , Ferro/farmacologia , Apoptose
8.
Dev Dyn ; 251(6): 1054-1076, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34129260

RESUMO

BACKGROUND: Hydrogen peroxide (H2 O2 ) is a key reactive oxygen species (ROS) generated during appendage regeneration among vertebrates. However, its role during tail regeneration in axolotl as redox signaling molecule is unclear. RESULTS: Treatment with exogenous H2 O2 rescues inhibitory effects of apocynin-induced growth suppression in tail blastema cells leading to cell proliferation. H2 O2 also promotes recruitment of immune cells, regulate the activation of AKT kinase and Agr2 expression during blastema formation. Additionally, ROS/H2 O2 regulates the expression and transcriptional activity of Yap1 and its target genes Ctgf and Areg. CONCLUSIONS: These results show that H2 O2 is necessary and sufficient to promote tail regeneration in axolotls. Additionally, Akt signaling and Agr2 were identified as ROS targets, suggesting that ROS/H2 O2 is likely to regulate epimorphic regeneration through these signaling pathways. In addition, ROS/H2 O2 -dependent-Yap1 activity is required during tail regeneration.


Assuntos
Ambystoma mexicanum , Peróxido de Hidrogênio , Animais , Peróxido de Hidrogênio/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regeneração/fisiologia , Cauda/fisiologia
9.
Appl Environ Microbiol ; 88(6): e0203721, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35108082

RESUMO

Spermidine, a kind of polycation and one important member of the polyamine family, is essential for survival in many kinds of organisms and participates in the regulation of cell growth and metabolism. To explore the mechanism by which spermidine regulates ganoderic acid (GA) biosynthesis in Ganoderma lucidum, the effects of spermidine on GA and reactive oxygen species (ROS) contents were examined. Our data suggested that spermidine promoted the production of mitochondrial ROS and positively regulated GA biosynthesis. Further research revealed that spermidine promoted the translation of mitochondrial complexes I and II and subsequently influenced their activity. With a reduction in eukaryotic translation initiation factor 5A (eIF5A) hypusination by over 50% in spermidine synthase gene (spds) knockdown strains, the activities of mitochondrial complexes I and II were reduced by nearly 60% and 80%, respectively, and the protein contents were reduced by over 50%, suggesting that the effect of spermidine on mitochondrial complexes I and II was mediated through its influence on eIF5A hypusination. Furthermore, after knocking down eIF5A, the deoxyhypusine synthase gene (dhs), and the deoxyhypusine hydroxylase gene (dohh), the mitochondrial ROS level was reduced by nearly 50%, and the GA content was reduced by over 40%, suggesting that eIF5A hypusination contributed to mitochondrial ROS production and GA biosynthesis. In summary, spermidine maintains mitochondrial ROS homeostasis by regulating the translation and subsequent activity of complexes I and II via eIF5A hypusination and promotes GA biosynthesis via mitochondrial ROS signaling. The present findings provide new insight into the spermidine-mediated biosynthesis of secondary metabolites. IMPORTANCE Spermidine is necessary for organism survival and is involved in the regulation of various biological processes. However, the specific mechanisms underlying the various physiological functions of spermidine are poorly understood, especially in microorganisms. In this study, we found that spermidine hypusinates eIF5A to promote the production of mitochondrial ROS and subsequently regulate secondary metabolism in microorganisms. Our study provides a better understanding of the mechanism by which spermidine regulates mitochondrial function and provides new insight into the spermidine-mediated biosynthesis of secondary metabolites.


Assuntos
Reishi , Espermidina , Mitocôndrias/metabolismo , Fatores de Iniciação de Peptídeos , Proteínas de Ligação a RNA , Espécies Reativas de Oxigênio/metabolismo , Reishi/metabolismo , Espermidina/metabolismo , Triterpenos , Fator de Iniciação de Tradução Eucariótico 5A
10.
Purinergic Signal ; 18(1): 135-154, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34964926

RESUMO

P2X7 is an ionotropic nucleotide receptor, forming the cation channel upon ATP stimulation. It can also function as a large membrane pore as well as transmit ATP-dependent signal without forming a channel at all. P2X7 activity in somatic cells is well-known, but remains poorly studied in glioma tumors. The current paper presents the comprehensive study of P2X7 activity in C6 and glioma cell line showing the wide range of effects the receptor has on glioma biology. We observed that P2X7 stimulation boosts glioma cell proliferation and increases cell viability. P2X7 activation promoted cell adhesion, mitochondria depolarization, and reactive oxygen species overproduction in C6 cells. P2X7 receptor also influenced glioma tumor growth in vivo via activation of pro-survival signaling pathways and ATP release. Treatment with Brilliant Blue G, a selective P2X7 antagonist, effectively inhibited glioma tumor development; decreased the expression of negative prognostic cancer markers pro-survival and epithelial-mesenchymal transition (EMT)-related proteins; and modulated the immune response toward glioma tumor in vivo. Finally, pathway-specific enrichment analysis of the microarray data from human patients also showed an upregulation of P2X7 receptor in gliomas from grades I to III. The presented results shed more light on the role of P2X7 receptor in the biology of this disease.


Assuntos
Glioma , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Glioma/metabolismo , Humanos , Ratos , Transdução de Sinais
11.
Biochem Biophys Res Commun ; 553: 172-179, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33773140

RESUMO

BACKGROUND: Cardiac fibrosis will increase wall stiffness and diastolic dysfunction, which will eventually lead to heart failure. Asenapine maleate (AM) is widely used in the treatment of schizophrenia. In the current study, we explored the potential mechanism underlying the role of AM in angiotensin II (Ang II)-induced cardiac fibrosis. METHODS: Cardiac fibroblasts (CFs) were stimulated using Ang II with or without AM. Cell proliferation was measured using the cell counting kit-8 assay and the Cell-Light EdU Apollo567 In Vitro Kit. The expression levels of proliferating cell nuclear antigen (PCNA) and α-smooth muscle actin (α-SMA) were detected using immunofluorescence or western blotting. At the protein level, the expression levels of the components of the transforming growth factor beta 1 (TGFß1)/mitogen-activated protein kinase (MAPK) signaling pathway were also detected. RESULTS: After Ang II stimulation, TGFß1, TGFß1 receptor, α-SMA, fibronectin (Fn), collagen type I (Col1), and collagen type III (Col3) mRNA levels increased; the TGFß1/MAPK signaling pathway was activated in CFs. After AM pretreatment, cell proliferation was inhibited, the numbers of PCNA -positive cells and the levels of cardiac fibrosis markers decreased. The activity of the TGFß1/MAPK signaling pathway was also inhibited. Therefore, AM can inhibit cardiac fibrosis by blocking the Ang II-induced activation through TGFß1/MAPK signaling pathway. CONCLUSIONS: This is the first report to demonstrate that AM can inhibit Ang II-induced cardiac fibrosis by down-regulating the TGFß1/MAPK signaling pathway. In this process, AM inhibited the proliferation and activation of CFs and reduced the levels of cardiac fibrosis markers. Thus, AM represents a potential treatment strategy for cardiac fibrosis.


Assuntos
Angiotensina II/farmacologia , Dibenzocicloeptenos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibrose/metabolismo , Fibrose/prevenção & controle , Miocárdio/citologia , Miocárdio/metabolismo , Ratos , Ratos Wistar , Esquizofrenia/tratamento farmacológico
12.
Semin Cell Dev Biol ; 80: 35-42, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28800930

RESUMO

Formation and maturation of a functional vascular network is a process called angiogenesis. This is a crucial biological event in all vertebrates. Precise morphogenetic and cellular mechanisms act in endothelial cells (ECs) to drive angiogenesis during growth and throughout adulthood. Reactive oxygen species (ROS) and their metabolism are proving to be crucial participants in the shaping and stabilizing of blood vessels. Often, the same mechanisms are responsible for the insurgence of vascular-associated pathologies. In this review we discuss how ROS-mediated signalling events and distinctive metabolic pathways drive the biology of endothelial cells. We support the use of alternative anti-angiogenic therapy based on the manipulation of ROS signalling and metabolism to solve angiogenesis-related diseases.


Assuntos
Células Endoteliais/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
J Biol Chem ; 294(38): 13852-13863, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31383739

RESUMO

Mitochondria are considered highly plastic organelles. This plasticity enables the mitochondria to undergo morphological and functional changes in response to cellular demands. Stem cells also need to remain functionally plastic (i.e. to have the ability to "decide" whether to remain quiescent or to undergo activation upon signaling cues to support tissue function and homeostasis). Mitochondrial plasticity is thought to enable this reshaping of stem cell functions, integrating signaling cues with stem cell outcomes. Indeed, recent evidence highlights the crucial role of maintaining mitochondrial plasticity for stem cell biology. For example, tricarboxylic acid (TCA) cycle metabolites generated and metabolized in the mitochondria serve as cofactors for epigenetic enzymes, thereby coupling mitochondrial metabolism and transcriptional regulation. Another layer of mitochondrial plasticity has emerged, pointing toward mitochondrial dynamics in regulating stem cell fate decisions. Imposing imbalanced mitochondrial dynamics by manipulating the expression levels of the key molecular regulators of this process influences cellular outcomes by changing the nuclear transcriptional program. Moreover, reactive oxygen species have also been shown to play an important role in regulating transcriptional profiles in stem cells. In this review, we focus on recent findings demonstrating that mitochondria are essential regulators of stem cell activation and fate decisions. We also discuss the suggested mechanisms and alternative routes for mitochondria-to-nucleus communications.


Assuntos
Diferenciação Celular/fisiologia , Plasticidade Celular/fisiologia , Mitocôndrias/fisiologia , Animais , Núcleo Celular/metabolismo , DNA Mitocondrial/metabolismo , Epigênese Genética/fisiologia , Homeostase , Humanos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
14.
Plant J ; 100(5): 1036-1051, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31436865

RESUMO

Pre-harvest sprouting (PHS) is one of the major problems in cereal production worldwide, which causes significant losses of both yield and quality; however, the molecular mechanism underlying PHS remains largely unknown. Here, we identified a dominant PHS mutant phs9-D. The corresponding gene PHS9 encodes a higher plant unique CC-type glutaredoxin and is specifically expressed in the embryo at the late embryogenesis stage, implying that PHS9 plays some roles in the late stage of seed development. Yeast two-hybrid screening showed that PHS9 could interact with OsGAP, which is an interaction partner of the abscicic acid (ABA) receptor OsRCAR1. PHS9- or OsGAP overexpression plants showed reduced ABA sensitivity in seed germination, whereas PHS9 or OsGAP knock-out mutant plants showed increased ABA sensitivity in seed germination, suggesting that PHS9 and OsGAP acted as negative regulators in ABA signaling during seed germination. Interestingly, the germination of PHS9 and OsGAP overexpression or knock-out plant seeds was weakly promoted by H2 O2 , implying that PHS9 and OsGAP could affect reactive oxygen species (ROS) signaling during seed germination. These results indicate that PHS9 plays an important role in the regulation of rice PHS through the integration of ROS signaling and ABA signaling.


Assuntos
Ácido Abscísico/farmacologia , Germinação/genética , Glutarredoxinas/genética , Oryza/genética , Plântula/genética , Sementes/genética , Ácido Abscísico/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Germinação/efeitos dos fármacos , Glutarredoxinas/metabolismo , Peróxido de Hidrogênio/farmacologia , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo
15.
New Phytol ; 226(1): 189-204, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31749193

RESUMO

Arabidopsis plants overexpressing glycolate oxidase in chloroplasts (GO5) and loss-of-function mutants of the major peroxisomal catalase isoform, cat2-2, produce increased hydrogen peroxide (H2 O2 ) amounts from the respective organelles when subjected to photorespiratory conditions like increased light intensity. Here, we have investigated if and how the signaling processes triggered by H2 O2 production in response to shifts in environmental conditions and the concomitant induction of indole phytoalexin biosynthesis in GO5 affect susceptibility towards the hemibiotrophic fungus Colletotrichum higginsianum. Combining histological, biochemical, and molecular assays, we found that the accumulation of the phytoalexin camalexin was comparable between GO genotypes and cat2-2 in the absence of pathogen. Compared with wild-type, GO5 showed improved resistance after light-shift-mediated production of H2 O2 , whereas cat2-2 became more susceptible and allowed significantly more pathogen entry. Unlike GO5, cat2-2 suffered from severe oxidative stress after light shifts, as indicated by glutathione pool size and oxidation state. We discuss a connection between elevated oxidative stress and dampened induction of salicylic acid mediated defense in cat2-2. Genetic analyses demonstrated that induced resistance of GO5 is dependent on WRKY33, but not on camalexin production. We propose that indole carbonyl nitriles might play a role in defense against C. higginsianum.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Colletotrichum , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Colletotrichum/metabolismo , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
16.
J Pineal Res ; 68(3): e12640, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32064655

RESUMO

Melatonin is a well-studied neurohormone oscillating in a 24-h cycle in vertebrates. Phytomelatonin is widespread in plant kingdom, but it remains elusive whether this newly characterized putative hormone underlies the regulation by daily rhythms. Here, we report phytomelatonin signaling, as reflected by changes in endogenous concentrations of phytomelatonin and expression of genes associated with biosynthesis of phytomelatonin (AtSNAT1, AtCOMT1, and AtASMT) and its receptor (AtPMTR1), shows 24-h oscillations in Arabidopsis. The variation of reactive oxygen species (ROS) production and scavenging and expression of ROS-related genes significantly decrease in pmtr1 and snat and increase in PMTR1-OE seedlings, indicating the rhythmicity in phytomelatonin signaling is required for maintenance of ROS dynamics. Additionally, the ROS signaling feedback influences the expression of AtSNAT1, AtCOMT1, AtASMT, and AtPMTR1, suggesting the phytomelatonin and ROS signaling are coordinately interrelated. The pmtr1 mutant plants lose diurnal stomatal closure, with stomata remaining open during daytime as well as nighttime and mutants showing more water loss and drought sensitivity when compared with the wild-type Col-0 plants. Taken together, our results suggest that PMTR1-regulated ROS signaling peaks in the afternoon and may transmit the darkness signals to trigger stomatal closure, which might be essential for high water-use efficiency and drought tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ritmo Circadiano/fisiologia , Melatonina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Estômatos de Plantas/fisiologia , Transdução de Sinais/fisiologia
17.
Biochem Biophys Res Commun ; 520(2): 406-412, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31607477

RESUMO

Selenium (Se) plays a vital role in reactive oxygen species (ROS) homeostasis and redox regulation in intracellular signaling via selenocysteine (Sec), known as the 21st proteinogenic amino acid, but its specific biological functions in development and disease remain undiscovered. In this study, we explored the role of selenophosphate synthetase 1 (SEPHS1) in the pluripotency maintenance and reprogramming. We found that high level of SEPHS1 is retained in undifferentiated embryonic stem cells (ESCs), which is decreased during their differentiation. SEPHS1 knockdown significantly reduced reprogramming efficiency, proving that SEPHS1 is required for acquisition of pluripotency. However, SEPHS1 knockdown did not affect the expression of significant pluripotency genes, suggesting that SEPHS1 may be involved in the survival of pluripotent stem cells rather than in the regulation of pluripotency genes. Transcriptome analysis revealed altered expression of the gene set related to the ROS pathway and apoptosis in SEPHS1-knockdown cells. We also demonstrated the role of SEPHS1 in human ESC clonogenicity, and we found improved single-cell survival of hESCs by selenium treatment in a concentration-dependent manner. Our study implies that hSEPHS1 is a regulator of selenium-mediated redox-signaling in human pluripotent stem cells and plays a role in their survival.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Fosfotransferases/genética , Fosfotransferases/metabolismo , Selênio/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Diferenciação Celular , Células Cultivadas , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/enzimologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Selênio/farmacologia , Transdução de Sinais
18.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234298

RESUMO

Abiotic and biotic factors induce oxidative stress involving the production and scavenging of reactive oxygen species (ROS). This review is a survey of well-known and possible roles of serine-threonine protein phosphatases in plant oxidative stress signaling, with special emphasis on PP2A. ROS mediated signaling involves three interrelated pathways: (i) perception of extracellular ROS triggers signal transduction pathways, leading to DNA damage and/or the production of antioxidants; (ii) external signals induce intracellular ROS generation that triggers the relevant signaling pathways and (iii) external signals mediate protein phosphorylation dependent signaling pathway(s), leading to the expression of ROS producing enzymes like NADPH oxidases. All pathways involve inactivation of serine-threonine protein phosphatases. The metal dependent phosphatase PP2C has a negative regulatory function during ABA mediated ROS signaling. PP2A is the most abundant protein phosphatase in eukaryotic cells. Inhibitors of PP2A exert a ROS inducing activity as well and we suggest that there is a direct relationship between these two effects of drugs. We present current findings and hypotheses regarding PP2A-ROS signaling connections related to all three ROS signaling pathways and anticipate future research directions for this field. These mechanisms have implications in the understanding of stress tolerance of vascular plants, having applications regarding crop improvement.


Assuntos
Estresse Oxidativo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteína Fosfatase 2/metabolismo , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo
19.
Semin Immunol ; 26(4): 277-94, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25086685

RESUMO

The impact of injury-induced immune responses on animal regenerative processes is highly variable, positive or negative depending on the context. This likely reflects the complexity of the innate immune system that behaves as a sentinel in the transition from injury to regeneration. Early-branching invertebrates with high regenerative potential as Hydra provide a unique framework to dissect how injury-induced immune responses impact regeneration. A series of early cellular events likely require an efficient immune response after amputation, as antimicrobial defence, epithelial cell stretching for wound closure, migration of interstitial progenitors toward the wound, cell death, phagocytosis of cell debris, or reconstruction of the extracellular matrix. The analysis of the injury-induced transcriptomic modulations of 2636 genes annotated as immune genes in Hydra identified 43 genes showing an immediate/early pulse regulation in all regenerative contexts examined. These regulations point to an enhanced cytoprotection via ROS signaling (Nrf, C/EBP, p62/SQSMT1-l2), TNFR and TLR signaling (TNFR16-like, TRAF2l, TRAF5l, jun, fos-related, SIK2, ATF1/CREB, LRRC28, LRRC40, LRRK2), proteasomal activity (p62/SQSMT1-l1, Ced6/Gulf, NEDD8-conjugating enzyme Ubc12), stress proteins (CRYAB1, CRYAB2, HSP16.2, DnaJB9, HSP90a1), all potentially regulating NF-κB activity. Other genes encoding immune-annotated proteins such as NPYR4, GTPases, Swap70, the antiproliferative BTG1, enzymes involved in lipid metabolism (5-lipoxygenase, ACSF4), secreted clotting factors, secreted peptidases are also pulse regulated upon bisection. By contrast, metalloproteinases and antimicrobial peptide genes largely follow a context-dependent regulation, whereas the protease inhibitor α2macroglobulin gene exhibits a sustained up-regulation. Hence a complex immune response to injury is linked to wound healing and regeneration in Hydra.


Assuntos
Hydra/imunologia , Hydra/fisiologia , Imunidade Inata , Animais , Plantas/imunologia , Espécies Reativas de Oxigênio/metabolismo , Regeneração , Transdução de Sinais
20.
Trends Biochem Sci ; 38(11): 556-65, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24120034

RESUMO

Reactive oxygen species (ROS) play an essential role in facilitating signal transduction processes within the cell. However, the precise details of the redox dynamics involved are not well understood. The generation of ROS is tightly controlled both spatially and temporally within the cell, making the study of ROS dynamics particularly difficult. In order to measure these dynamics, precise tools that can specifically examine the relevant ROS are required. Recent advancements in methodologies for ROS measurement have allowed the study of ROS biology at a level of precision previously unachievable. Here, we discuss improvements to fluorescent ROS dye technologies, genetically encoded ROS reporters, nanoparticle delivery systems, and nanotube ROS probes. These technologies improve specificity, localization and sensitivity over previously available ROS probes.


Assuntos
Espécies Reativas de Oxigênio/análise , Animais , Humanos , Sondas Moleculares/química , Nanoestruturas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA