Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci Res ; 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33350496

RESUMO

Mammalian cerebellar astrocytes critically regulate the differentiation and maturation of neuronal Purkinje cells and granule precursors. The G protein-coupled receptor 37-like 1 (Gpr37l1) is expressed by Bergmann astrocytes and interacts with patched 1 (Ptch1) at peri-ciliary membranes. Cerebellar primary astrocyte cultures from wild-type and Gpr37l1 null mutant mouse pups were established and studied. Primary cilia were produced by cultures of both genotypes, as well as Ptch1 and smoothened (Smo) components of the sonic hedgehog (Shh) mitogenic pathway. Compared to wild-type cells, Gpr37l1-/- astrocytes displayed striking increases in proliferative activity, Ptch1 protein expression and internalization, intracellular cholesterol content, ciliary localization of Smo, as well as a marked production of active Shh. Similar effects were reproduced by treating wild-type astrocytes with a putative prosaptide ligand of Gpr37l1. These findings indicate that Gpr37l1-Ptch1 interactions specifically regulate Ptch1 internalization and trafficking, with consequent stimulation of Shh production and activation of proliferative signaling.

2.
J Comp Neurol ; 529(4): 811-827, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32656805

RESUMO

Polysialic acid (polySia), a homopolymer of α2,8-linked glycans, is a posttranslational modification on a few glycoproteins, most commonly in the brain, on the neural cell adhesion molecule. Most research in the adult central nervous system has focused on its expression in higher brain regions, where its distribution coincides with regions known to exhibit high levels of synaptic plasticity. In contrast, scant attention has been paid to the expression of polySia in the hindbrain. The main aims of the study were to examine the distribution of polySia immunoreactivity in the brainstem and thoracolumbar spinal cord, to compare the distribution of polySia revealed by two commercial antibodies commonly used for its investigation, and to compare labeling in the rat and mouse. We present a comprehensive atlas of polySia immunoreactivity: we report that polySia labeling is particularly dense in the dorsal tegmentum, medial vestibular nuclei and lateral parabrachial nucleus, and in brainstem regions associated with autonomic function, including the dorsal vagal complex, A5, rostral ventral medulla, A1, and midline raphe, as well as sympathetic preganglionic neurons in the spinal cord and central targets of primary sensory afferents (nucleus of the solitary tract, spinal trigeminal nucleus, and dorsal horn [DH]). Ultrastructural examination showed labeling was present predominantly on the plasma membrane/within the extracellular space/in or on astrocytes. Labeling throughout the brainstem and spinal cord were very similar for the two antibodies and was eliminated by the polySia-specific sialidase, Endo-NF. Similar patterns of distribution were found in rat and mouse brainstem with differences evident in DH.


Assuntos
Tronco Encefálico/química , Vértebras Lombares , Ácidos Siálicos/análise , Medula Espinal/química , Vértebras Torácicas , Animais , Tronco Encefálico/citologia , Tronco Encefálico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Ácidos Siálicos/biossíntese , Medula Espinal/citologia , Medula Espinal/metabolismo
3.
J Comp Neurol ; 527(10): 1558-1576, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30520050

RESUMO

Excitatory neurons of the cerebral cortex migrate radially from their place of birth to their final position in the cortical plate during development. Radially-migrating neurons display a single leading process that establishes the direction of movement. This leading process has been described as being unbranched, and the occurrence of branches proposed to impair radial migration. Here we have analyzed the detailed morphology of leading process in radially-migrating pyramidal neurons and its impact on radial migration. We have compared ferret and mouse to identify differences between cortices that undergo folding or not. In mouse, we find that half of radially-migrating neurons exhibit a branched leading process, this being even more frequent in ferret. Branched leading processes are less parallel to radial glia fibers than those unbranched, suggesting some independence from radial glia fibers. Two-photon videomicroscopy revealed that a vast majority of neurons branch their leading process at some point during radial migration, but this does not reduce their migration speed. We have tested the functional impact of exuberant leading process branching by expressing a dominant negative Cdk5. We confirm that loss of Cdk5 function significantly impairs radial migration, but this is independent from increased branching of the leading process. We propose that excitatory neurons may branch their leading process as an evolutionary mechanism to allow cells changing their trajectory of migration to disperse laterally, such that increased branching in gyrencephalic species favors the tangential dispersion of radially-migrating neurons, and cortical folding.


Assuntos
Movimento Celular/fisiologia , Córtex Cerebral/embriologia , Neurogênese/fisiologia , Células Piramidais/fisiologia , Animais , Furões , Camundongos
4.
J Comp Neurol ; 527(17): 2793-2812, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045238

RESUMO

This study demonstrates glial and gliovascular markers of organon vasculosum laminae terminalis (OVLT) in three planes. The distribution of glial markers displayed similarities to the subfornical organ. There was an inner part with vimentin- and nestin-immunopositive glia whereas GFAP and the water-channel aquaporin 4 were found at the periphery. This separation indicates different functions of the two regions. The presence of nestin may indicate stem cell-capabilities whereas aquaporin 4 has been reported to promote the osmoreceptor function. Glutamine synthetase immunoreactivity was sparse like in the area postrema and subfornical organ. The laminin and ß-dystroglycan immunolabelings altered along the vessels such as in the subfornical organ indicating altering gliovascular relations. The different subdivisions of OVLT received glial processes of different origins. The posterior periventricular zone contained short vimentin-immunopositive processes from the ependyma of the adjacent surface of the third ventricle. The lateral periventricular zone received forceps-like process systems from the anterolateral part of the third ventricle. Most interestingly, the "dorsal cap" received a mixed group of long GFAP- and vimentin-immunopositive processes from a distant part of the third ventricle. The processes may have two functions: a guidance for newly produced cells like radial glia in immature brain and/or a connection between distant parts of the third ventricle and OVLT.


Assuntos
Astrócitos/citologia , Órgãos Circunventriculares/citologia , Terceiro Ventrículo/citologia , Animais , Astrócitos/metabolismo , Órgãos Circunventriculares/metabolismo , Citoesqueleto/metabolismo , Distroglicanas/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Laminina/metabolismo , Microscopia Confocal , Nestina/metabolismo , Ratos Wistar , Terceiro Ventrículo/metabolismo , Vimentina/metabolismo
5.
J Comp Neurol ; 526(14): 2165-2186, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29893014

RESUMO

The actual organization of the central nucleus of the amygdala (CEA) in the rat is mostly based on cytoarchitecture and the distribution of several cell types, as described by McDonald in 1982. Four divisions were identified by this author. However, since this original work, one of these divisions, the intermediate part, has not been consistently recognized based on Nissl-stained material. In the present study, we observed that a compact condensation of retrogradely labeled cells is found in the CEA after fluorogold injection in the anterior region of the tuberal lateral hypothalamic area (LHA) in the rat. We then searched for neurochemical markers of this cell condensation and found that it is quite specifically labeled for calbindin (Cb), but also contains calretinin (Cr), tyrosine hydroxylase (TH) and methionine-enkephalin (Met-Enk) immunohistochemical signals. These neurochemical features are specific to this cell group which, therefore, is distinct from the other parts of the CEA. We then performed cholera toxin injections in the mouse LHA to identify this cell group in this species. We found that neurons exist in the medial and rostral CEAl that project into the LHA but they have a less tight organization than in the rat.


Assuntos
Núcleo Central da Amígdala/fisiologia , Animais , Calbindina 2/metabolismo , Calbindinas/metabolismo , Núcleo Central da Amígdala/anatomia & histologia , Encefalina Metionina/metabolismo , Região Hipotalâmica Lateral/anatomia & histologia , Região Hipotalâmica Lateral/fisiologia , Imuno-Histoquímica , Masculino , Camundongos , Vias Neurais/anatomia & histologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/metabolismo
6.
J Comp Neurol ; 525(6): 1489-1498, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27580962

RESUMO

The claustrum is a small, elongated nucleus close to the external capsule and deep in the insular cortex. In rodents, this nucleus is characterized by a dense cluster of parvalbumin labeling. The claustrum is connected with the cerebral cortex. It does not project to the brainstem, but brainstem structures can influence this nucleus. To identify some specific projections from the lateral hypothalamus and midbrain, we analyzed the distribution of projections labeled with antibodies against tyrosine hydroxylase (TH), melanin-concentrating hormone (MCH), and hypocretin (Hcrt) in the region of the claustrum. The claustrum contains a significant projection by MCH axons, whereas it is devoid of TH projections. Unlike TH and MCH axons, Hcrt axons are scattered throughout the region. This observation is discussed mainly with regard to the role of the claustrum in cognitive functions and that of MCH in REM sleep. J. Comp. Neurol. 525:1489-1498, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Axônios/metabolismo , Gânglios da Base/citologia , Gânglios da Base/metabolismo , Vias Neurais/citologia , Vias Neurais/metabolismo , Animais , Imunofluorescência , Hormônios Hipotalâmicos/metabolismo , Imageamento Tridimensional , Masculino , Melaninas/metabolismo , Orexinas/metabolismo , Hormônios Hipofisários/metabolismo , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA