Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Comp Neurol ; 529(4): 811-827, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32656805

RESUMO

Polysialic acid (polySia), a homopolymer of α2,8-linked glycans, is a posttranslational modification on a few glycoproteins, most commonly in the brain, on the neural cell adhesion molecule. Most research in the adult central nervous system has focused on its expression in higher brain regions, where its distribution coincides with regions known to exhibit high levels of synaptic plasticity. In contrast, scant attention has been paid to the expression of polySia in the hindbrain. The main aims of the study were to examine the distribution of polySia immunoreactivity in the brainstem and thoracolumbar spinal cord, to compare the distribution of polySia revealed by two commercial antibodies commonly used for its investigation, and to compare labeling in the rat and mouse. We present a comprehensive atlas of polySia immunoreactivity: we report that polySia labeling is particularly dense in the dorsal tegmentum, medial vestibular nuclei and lateral parabrachial nucleus, and in brainstem regions associated with autonomic function, including the dorsal vagal complex, A5, rostral ventral medulla, A1, and midline raphe, as well as sympathetic preganglionic neurons in the spinal cord and central targets of primary sensory afferents (nucleus of the solitary tract, spinal trigeminal nucleus, and dorsal horn [DH]). Ultrastructural examination showed labeling was present predominantly on the plasma membrane/within the extracellular space/in or on astrocytes. Labeling throughout the brainstem and spinal cord were very similar for the two antibodies and was eliminated by the polySia-specific sialidase, Endo-NF. Similar patterns of distribution were found in rat and mouse brainstem with differences evident in DH.


Assuntos
Tronco Encefálico/química , Vértebras Lombares , Ácidos Siálicos/análise , Medula Espinal/química , Vértebras Torácicas , Animais , Tronco Encefálico/citologia , Tronco Encefálico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Ácidos Siálicos/biossíntese , Medula Espinal/citologia , Medula Espinal/metabolismo
2.
J Comp Neurol ; 527(17): 2826-2842, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045239

RESUMO

When energy balance is altered by aerobic exercise, starvation, and cold exposure, for example, there appears to be coordination of the responses of skeletal muscle, white adipose (WAT), and brown adipose (BAT) tissues. We hypothesized that WAT, BAT, and skeletal muscle may share an integrated regulation by the central nervous system (CNS); specifically, that neurons in brain regions associated with energy balance would possess neuroanatomical connections to permit coordination of multiple, complementary responses in these downstream tissues. To study this, we used trans-neuronal viral retrograde tract tracing, using isogenic strains of pseudorabies virus (PRV) with distinct fluorescent reporters (either eGFP or mRFP), injected pairwise into male rat gastrocnemius, subcutaneous WAT and interscapular BAT, coupled with neurochemical characterization of specific cell populations for cocaine- and amphetamine-related transcript (CART), oxytocin (OX), corticotrophin releasing hormone (CRH) and calcitonin gene-related peptide (CGRP). Cells in the paraventricular (PVN) and parabrachial (PBN) nuclei and brainstem showed dual projections to muscle + WAT, muscle + BAT, and WAT + BAT. Dual PRV-labeled cells were found in parvocellular, magnocellular and descending/pre-autonomic regions of the PVN, and multiple structural divisions of the PBN and brainstem. In most PBN subdivisions, more than 50% of CGRP cells dually projected to muscle + WAT and muscle + BAT. Similarly, 31-68% of CGRP cells projected both to WAT + BAT. However, dual PRV-labeled cells in PVN only occasionally expressed OX or CRH but not CART. These studies reveal for the first time both separate and shared outflow circuitries among skeletal muscle and subcutaneous WAT and BAT.


Assuntos
Tecido Adiposo Marrom/inervação , Tecido Adiposo Branco/inervação , Tronco Encefálico/citologia , Músculo Esquelético/inervação , Neurônios/citologia , Núcleo Hipotalâmico Paraventricular/citologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Tronco Encefálico/metabolismo , Masculino , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Vias Neurais/citologia , Vias Neurais/metabolismo , Técnicas de Rastreamento Neuroanatômico , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA