Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(3): 439-453.e14, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29290468

RESUMO

Telomere maintenance critically depends on the distinct activities of telomerase, which adds telomeric repeats to solve the end replication problem, and RTEL1, which dismantles DNA secondary structures at telomeres to facilitate replisome progression. Here, we establish that reversed replication forks are a pathological substrate for telomerase and the source of telomere catastrophe in Rtel1-/- cells. Inhibiting telomerase recruitment to telomeres, but not its activity, or blocking replication fork reversal through PARP1 inhibition or depleting UBC13 or ZRANB3 prevents the rapid accumulation of dysfunctional telomeres in RTEL1-deficient cells. In this context, we establish that telomerase binding to reversed replication forks inhibits telomere replication, which can be mimicked by preventing replication fork restart through depletion of RECQ1 or PARG. Our results lead us to propose that telomerase inappropriately binds to and inhibits restart of reversed replication forks within telomeres, which compromises replication and leads to critically short telomeres.


Assuntos
DNA Helicases/genética , Replicação do DNA , Homeostase do Telômero , Animais , Linhagem Celular , Células Cultivadas , DNA Helicases/metabolismo , Glicosídeo Hidrolases/metabolismo , Camundongos , Poli(ADP-Ribose) Polimerase-1/metabolismo , RecQ Helicases/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
2.
EMBO J ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039288

RESUMO

The eukaryotic replisome is assembled around the CMG (CDC45-MCM-GINS) replicative helicase, which encircles the leading-strand DNA template at replication forks. When CMG stalls during DNA replication termination, or at barriers such as DNA-protein crosslinks on the leading strand template, a second helicase is deployed on the lagging strand template to support replisome progression. How these 'accessory' helicases are targeted to the replisome to mediate barrier bypass and replication termination remains unknown. Here, by combining AlphaFold structural modelling with experimental validation, we show that the budding yeast Rrm3 accessory helicase contains two Short Linear Interaction Motifs (SLIMs) in its disordered N-terminus, which interact with CMG and the leading-strand DNA polymerase Polε on one side of the replisome. This flexible tether positions Rrm3 adjacent to the lagging strand template on which it translocates, and is critical for replication termination in vitro and Rrm3 function in vivo. The primary accessory helicase in metazoa, RTEL1, is evolutionarily unrelated to Rrm3, but binds to CMG and Polε in an analogous manner, revealing a conserved docking mechanism for accessory helicases in the eukaryotic replisome.

3.
Genes Dev ; 34(15-16): 1065-1074, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561545

RESUMO

RTEL1 helicase is a component of DNA repair and telomere maintenance machineries. While RTEL1's role in DNA replication is emerging, how RTEL1 preserves genomic stability during replication remains elusive. Here we used a range of proteomic, biochemical, cell, and molecular biology and gene editing approaches to provide further insights into potential role(s) of RTEL1 in DNA replication and genome integrity maintenance. Our results from complementary human cell culture models established that RTEL1 and the Polδ subunit Poldip3 form a complex and are/function mutually dependent in chromatin binding after replication stress. Loss of RTEL1 and Poldip3 leads to marked R-loop accumulation that is confined to sites of active replication, enhances endogenous replication stress, and fuels ensuing genomic instability. The impact of depleting RTEL1 and Poldip3 is epistatic, consistent with our proposed concept of these two proteins operating in a shared pathway involved in DNA replication control under stress conditions. Overall, our data highlight a previously unsuspected role of RTEL1 and Poldip3 in R-loop suppression at genomic regions where transcription and replication intersect, with implications for human diseases including cancer.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , Estruturas R-Loop , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular , Cromatina/metabolismo , Humanos , Estresse Fisiológico , Inibidores da Topoisomerase I/farmacologia
4.
Mol Cell ; 75(4): 859-874.e4, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31351878

RESUMO

Homologous recombination (HR) is essential for high-fidelity DNA repair during mitotic proliferation and meiosis. Yet, context-specific modifications must tailor the recombination machinery to avoid (mitosis) or enforce (meiosis) the formation of reciprocal exchanges-crossovers-between recombining chromosomes. To obtain molecular insight into how crossover control is achieved, we affinity purified 7 DNA-processing enzymes that channel HR intermediates into crossovers or noncrossovers from vegetative cells or cells undergoing meiosis. Using mass spectrometry, we provide a global characterization of their composition and reveal mitosis- and meiosis-specific modules in the interaction networks. Functional analyses of meiosis-specific interactors of MutLγ-Exo1 identified Rtk1, Caf120, and Chd1 as regulators of crossing-over. Chd1, which transiently associates with Exo1 at the prophase-to-metaphase I transition, enables the formation of MutLγ-dependent crossovers through its conserved ability to bind and displace nucleosomes. Thus, rewiring of the HR network, coupled to chromatin remodeling, promotes context-specific control of the recombination outcome.


Assuntos
Troca Genética/fisiologia , Meiose/fisiologia , Mitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Mol Cell ; 70(3): 449-461.e5, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727617

RESUMO

Hard-to-replicate regions of chromosomes (e.g., pericentromeres, centromeres, and telomeres) impede replication fork progression, eventually leading, in the event of replication stress, to chromosome fragility, aging, and cancer. Our knowledge of the mechanisms controlling the stability of these regions is essentially limited to telomeres, where fragility is counteracted by the shelterin proteins. Here we show that the shelterin subunit TRF2 ensures progression of the replication fork through pericentromeric heterochromatin, but not centromeric chromatin. In a process involving its N-terminal basic domain, TRF2 binds to pericentromeric Satellite III sequences during S phase, allowing the recruitment of the G-quadruplex-resolving helicase RTEL1 to facilitate fork progression. We also show that TRF2 is required for the stability of other heterochromatic regions localized throughout the genome, paving the way for future research on heterochromatic replication and its relationship with aging and cancer.


Assuntos
Replicação do DNA/genética , Genoma/genética , Heterocromatina/genética , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética , Linhagem Celular Tumoral , Centrômero/genética , Cromatina/genética , DNA Helicases/genética , Quadruplex G , Células HeLa , Humanos , Fase S/genética
6.
Plant J ; 119(3): 1418-1432, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824612

RESUMO

DNA-protein crosslinks (DPCs) are highly toxic DNA lesions represented by proteins covalently bound to the DNA. Persisting DPCs interfere with fundamental genetic processes such as DNA replication and transcription. Cytidine analog zebularine (ZEB) has been shown to crosslink DNA METHYLTRANSFERASE1 (MET1). Recently, we uncovered a critical role of the SMC5/6-mediated SUMOylation in the repair of DPCs. In an ongoing genetic screen, we identified two additional candidates, HYPERSENSITIVE TO ZEBULARINE 2 and 3, that were mapped to REGULATOR OF TELOMERE ELONGATION 1 (RTEL1) and polymerase TEBICHI (TEB), respectively. By monitoring the growth of hze2 and hze3 plants in response to zebularine, we show the importance of homologous recombination (HR) factor RTEL1 and microhomology-mediated end-joining (MMEJ) polymerase TEB in the repair of MET1-DPCs. Moreover, genetic interaction and sensitivity assays showed the interdependency of SMC5/6 complex, HR, and MMEJ in the homology-directed repair of MET1-DPCs in Arabidopsis. Altogether, we provide evidence that MET1-DPC repair in plants is more complex than originally expected.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citidina , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citidina/análogos & derivados , Citidina/metabolismo , Citidina/farmacologia , Reparo de DNA por Recombinação , Reparo do DNA , DNA de Plantas/genética , DNA de Plantas/metabolismo , Dano ao DNA
7.
BMC Cancer ; 24(1): 385, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532312

RESUMO

Gliomas are the most common primary intracranial tumor worldwide. The maintenance of telomeres serves as an important biomarker of some subtypes of glioma. In order to investigate the biological role of RTEL1 in glioma. Relative telomere length (RTL) and RTEL1 mRNA was explored and regression analysis was performed to further examine the relationship of the RTL and the expression of RTEL1 with clinicopathological characteristics of glioma patients. We observed that high expression of RTEL1 is positively correlated with telomere length in glioma tissue, and serve as a poor prognostic factor in TERT wild-type patients. Further in vitro studies demonstrate that RTEL1 promoted proliferation, formation, migration and invasion ability of glioma cells. In addition, in vivo studies also revealed the oncogene role of RTEL1 in glioma. Further study using RNA sequence and phospho-specific antibody microarray assays identified JNK/ELK1 signaling was up-regulated by RTEL1 in glioma cells through ROS. In conclusion, our results suggested that RTEL1 promotes glioma tumorigenesis through JNK/ELK1 cascade and indicate that RTEL1 may be a prognostic biomarker in gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/patologia , Neoplasias Encefálicas/genética , Transformação Celular Neoplásica/genética , Oncogenes , Biomarcadores , Proliferação de Células , Proteínas Elk-1 do Domínio ets/genética , DNA Helicases/genética
8.
COPD ; 21(1): 2316607, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38420994

RESUMO

Chronic obstructive pulmonary disease (COPD) is a common chronic disease characterized by airflow obstruction, which seriously threatens people's health. The COPD mouse model was established with cigarette smoke induction. Hematoxylin-eosin staining and Masson staining were carried out to observe the pathological changes of lung tissues in COPD mice. RTEL1 was silenced in COPD mice, and immunohistochemistry was used to detect RTEL1, ki67 and Caspase-3 expression. The role of RTEL1 in inflammation were evaluated by ELISA, and the impacts of RTEL1 on M1 and M2 macrophage markers (iNOS and CD206) were evaluated by qPCR and western blotting. In COPD model, there was an increase in the number of inflammatory cells, with slightly disorganized cell arrangement, unclear hierarchy, condensed and solidified nuclei, while knockdown of RTEL1 improved the inflammatory infiltration. Moreover, knockdown of RTEL1 reduced ki67-positive cells and increased Caspase-3 positive cells in COPD group. The increased inflammatory factors (IL-1ß, MMP-9, TNF-α, IL-4, IL-6, and IL-23) in COPD were suppressed by knockdown of RTEL1, while iNOS was raised and CD206 was inhibited. In conclusion, knockdown of RTEL1 promoted M1 and inhibited M2 macrophage polarization and inflammation to alleviate COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Camundongos , Animais , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/terapia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Caspase 3/metabolismo , Antígeno Ki-67/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Inflamação/metabolismo , DNA Helicases/metabolismo
9.
Respir Res ; 24(1): 158, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328761

RESUMO

BACKGROUND: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a novel coronavirus that caused an ongoing pandemic of a pathology termed Coronavirus Disease 19 (COVID-19). Several studies reported that both COVID-19 and RTEL1 variants are associated with shorter telomere length, but a direct association between the two is not generally acknowledged. Here we demonstrate that up to 8.6% of severe COVID-19 patients bear RTEL1 ultra-rare variants, and show how this subgroup can be recognized. METHODS: A cohort of 2246 SARS-CoV-2-positive subjects, collected within the GEN-COVID Multicenter study, was used in this work. Whole exome sequencing analysis was performed using the NovaSeq6000 System, and machine learning methods were used for candidate gene selection of severity. A nested study, comparing severely affected patients bearing or not variants in the selected gene, was used for the characterisation of specific clinical features connected to variants in both acute and post-acute phases. RESULTS: Our GEN-COVID cohort revealed a total of 151 patients carrying at least one RTEL1 ultra-rare variant, which was selected as a specific acute severity feature. From a clinical point of view, these patients showed higher liver function indices, as well as increased CRP and inflammatory markers, such as IL-6. Moreover, compared to control subjects, they present autoimmune disorders more frequently. Finally, their decreased diffusion lung capacity for carbon monoxide after six months of COVID-19 suggests that RTEL1 variants can contribute to the development of SARS-CoV-2-elicited lung fibrosis. CONCLUSION: RTEL1 ultra-rare variants can be considered as a predictive marker of COVID-19 severity, as well as a marker of pathological evolution in pulmonary fibrosis in the post-COVID phase. This notion can be used for a rapid screening in hospitalized infected people, for vaccine prioritization, and appropriate follow-up assessment for subjects at risk. Trial Registration NCT04549831 ( www. CLINICALTRIAL: org ).


Assuntos
COVID-19 , DNA Helicases , Síndrome de COVID-19 Pós-Aguda , Fibrose Pulmonar , Humanos , COVID-19/diagnóstico , COVID-19/genética , DNA Helicases/genética , Pulmão , Síndrome de COVID-19 Pós-Aguda/genética , Fibrose Pulmonar/diagnóstico , Fibrose Pulmonar/genética , SARS-CoV-2
10.
BMC Cancer ; 23(1): 1145, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001404

RESUMO

BACKGROUND: Neuroblastoma, a neuroendocrine tumor originating from the sympathetic ganglia, is one of the most common malignancies in childhood. RTEL1 is critical in many fundamental cellular processes, such as DNA replication, DNA damage repair, genomic integrity, and telomere stability. Single nucleotide polymorphisms (SNPs) in the RTEL1 gene have been reported to confer susceptibility to multiple cancers, but their contributing roles in neuroblastoma remain unclear. METHODS: We conducted a study on 402 neuroblastoma cases and 473 controls to assess the association between four RTEL1 SNPs (rs3761124 T>C, rs3848672 T>C, rs3208008 A>C and rs2297441 G>A) and neuroblastoma susceptibility. RESULTS: Our results show that rs3848672 T>C is significantly associated with an increased risk of neuroblastoma [CC vs. TT/TC: adjusted odds ratio (OR)=1.39, 95% confidence interval (CI)=1.02-1.90, P=0.038]. The stratified analysis further indicated that boy carriers of the rs3848672 CC genotype had a higher risk of neuroblastoma, and all carriers had an increased risk of developing neuroblastoma of mediastinum origin. Moreover, the rs2297441 AA genotype increased neuroblastoma risk in girls and predisposed children to neuroblastoma arising from retroperitoneal. CONCLUSION: Our study indicated that the rs3848672 CC and rs2297441 AA genotypes of the RTEL1 gene are significantly associated with an increased risk of neuroblastoma in Chinese children in a gender- and site-specific manner.


Assuntos
Predisposição Genética para Doença , Neuroblastoma , Masculino , Feminino , Humanos , Criança , População do Leste Asiático , Genótipo , Polimorfismo de Nucleotídeo Único , Neuroblastoma/genética , Neuroblastoma/patologia , Estudos de Casos e Controles , DNA Helicases/genética
11.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069069

RESUMO

In sporadic idiopathic pulmonary fibrosis (sIPF) and pulmonary fibrosis caused by a mutation in telomere (TRG-PF) or surfactant related genes (SRG-PF), there are a number of aberrant cellular processes known that can lead to fibrogenesis. We investigated whether RNA expression of genes involved in these processes differed between sIPF, TRG-PF, and SRG-PF and whether expression levels were associated with survival. RNA expression of 28 genes was measured in lung biopsies of 26 sIPF, 17 TRG-PF, and 6 SRG-PF patients. Significant differences in RNA expression of TGFBR2 (p = 0.02) and SFTPA2 (p = 0.02) were found between sIPF, TRG-PF, and SRG-PF. Patients with low (

Assuntos
Fibrose Pulmonar Idiopática , RNA , Humanos , RNA/genética , Inclusão em Parafina , Pulmão/patologia , Fibrose Pulmonar Idiopática/metabolismo , Chaperona BiP do Retículo Endoplasmático , Formaldeído
12.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525595

RESUMO

Genes encoding ribosomal RNA (rDNA) are essential for cell survival and are particularly sensitive to factors leading to genomic instability. Their repetitive character makes them prone to inappropriate recombinational events arising from collision of transcriptional and replication machineries, resulting in unstable rDNA copy numbers. In this review, we summarize current knowledge on the structure and organization of rDNA, its role in sensing changes in the genome, and its linkage to aging. We also review recent findings on the main factors involved in chromatin assembly and DNA repair in the maintenance of rDNA stability in the model plants Arabidopsis thaliana and the moss Physcomitrella patens, providing a view across the plant evolutionary tree.


Assuntos
Envelhecimento/genética , Arabidopsis/genética , Bryopsida/genética , Reparo do DNA , DNA Ribossômico/genética , Animais , Montagem e Desmontagem da Cromatina , Replicação do DNA , DNA de Plantas/genética , Dosagem de Genes , Instabilidade Genômica , Humanos , Transcrição Gênica
13.
Plant J ; 98(6): 1090-1105, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30834585

RESUMO

Telomeres and ribosomal RNA genes (rDNA) are essential for cell survival and particularly sensitive to factors affecting genome stability. Here, we examine the role of RAD51 and its antagonist, RTEL1, in the moss Physcomitrella patens. In corresponding mutants, we analyse their sensitivity to DNA damage, the maintenance of telomeres and rDNA, and repair of double-stranded breaks (DSBs) induced by genotoxins with various modes of action. While the loss of RTEL1 results in rapid telomere shortening, concurrent loss of both RAD51 genes has no effect on telomere lengths. We further demonstrate here the linked arrangement of 5S and 45S rRNA genes in P. patens. The spacer between 5S and 18S rRNA genes, especially the region downstream from the transcription start site, shows conspicuous clustering of sites with a high propensity to form quadruplex (G4) structures. Copy numbers of 5S and 18S rDNA are reduced moderately in the pprtel1 mutant, and significantly in the double pprad51-1-2 mutant, with no progression during subsequent cultivation. While reductions in 45S rDNA copy numbers observed in pprtel1 and pprad51-1-2 plants apply also to 5S rDNA, changes in transcript levels are different for 45S and 5S rRNA, indicating their independent transcription by RNA polymerase I and III, respectively. The loss of SOL (Sog One-Like), a transcription factor regulating numerous genes involved in DSB repair, increases the rate of DSB repair in dividing as well as differentiated tissue, and through deactivation of G2/M cell-cycle checkpoint allows the cell-cycle progression manifested as a phenotype resistant to bleomycin.


Assuntos
Bryopsida/enzimologia , DNA Ribossômico/genética , Instabilidade Genômica , Telômero/genética , Bryopsida/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Loci Gênicos , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Ribossômico/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 5S/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Plant J ; 100(5): 1083-1094, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31381206

RESUMO

The controlled change of plant genomes by homologous recombination (HR) is still difficult to achieve. We previously developed the in planta gene targeting (ipGT) technology which depends on the simultaneous activation of the target locus by a double-strand break and the excision of the target vector. Whereas the use of SpCas9 resulted in low ipGT frequencies in Arabidopsis, we were recently able to improve the efficiency by using egg cell-specific expression of the potent but less broadly applicable SaCas9 nuclease. In this study, we now tested whether we could improve ipGT further, by either performing it in cells with enhanced intrachromosomal HR efficiencies or by the use of Cas12a, a different kind of CRISPR/Cas nuclease with an alternative cutting mechanism. We could show before that plants possess three kinds of DNA ATPase complexes, which all lead to instabilities of homologous genomic repeats if lost by mutation. As these proteins act in independent pathways, we tested ipGT in double mutants in which intrachromosomal HR is enhanced 20-80-fold. However, we were not able to obtain higher ipGT frequencies, indicating that mechanisms for gene targeting (GT) and chromosomal repeat-induced HR differ. However, using LbCas12a, the GT frequencies were higher than with SaCas9, despite a lower non-homologous end-joining (NHEJ) induction efficiency, demonstrating the particular suitability of Cas12a to induce HR. As SaCas9 has substantial restrictions due to its longer GC rich PAM sequence, the use of LbCas12a with its AT-rich PAM broadens the range of ipGT drastically, particularly when targeting in CG-deserts like promoters and introns.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , DNA Helicases/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Marcação de Genes/métodos , Proteínas de Arabidopsis/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Helicases/genética , Recombinação Homóloga , Mutação
15.
J Clin Immunol ; 40(7): 1010-1019, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32710398

RESUMO

PURPOSE: More than 50 different monogenic disorders causing inflammatory bowel disease (IBD) have been identified. Our goal was to characterize the clinical phenotype, genetic workup, and immunologic alterations in an Ashkenazi Jewish patient that presented during infancy with ulcerative colitis and unique clinical manifestations. METHODS: Immune workup and whole-exome sequencing were performed, along with Sanger sequencing for confirmation. Next-generation sequencing of the TCRB and IgH was conducted for immune repertoire analysis. Telomere length was evaluated by in-gel hybridization assay. Mass cytometry was performed on patient's peripheral blood mononuclear cells, and compared with control subjects and patients with UC. RESULTS: The patient presented in infancy with failure to thrive and dysmorphic features, consistent with a diagnosis of dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome. Severe ulcerative colitis manifested in the first year of life and proceeded to the development of a primary immunodeficiency, presenting as Pneumocystis jiroveci pneumonia and hypogammaglobulinemia. Genetic studies identified a deleterious homozygous C.3791G>A missense mutation in the helicase regulator of telomere elongation 1 (RTEL1), leading to short telomeres in the index patient. Immune repertoire studies showed polyclonal T and B cell receptor distribution, while mass cytometry analysis demonstrated marked immunological alterations, including a predominance of naïve T cells, paucity of B cells, and a decrease in various innate immune subsets. CONCLUSIONS: RTEL1 mutations are associated with significant alterations in immune landscape and can manifest with infantile-onset IBD. A high index of suspicion is required in Ashkenazi Jewish families where the carriage rate of the C.3791G>A variant is high.


Assuntos
Colite Ulcerativa/diagnóstico , Colite Ulcerativa/genética , DNA Helicases/genética , Predisposição Genética para Doença , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/genética , Mutação , Estudos de Associação Genética , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Fenótipo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Telômero/genética , Sequenciamento do Exoma
16.
Mol Biol Rep ; 47(2): 877-886, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31721021

RESUMO

Diffuse gliomas are the most common malignant primary brain tumors and remain incurable. A better knowledge of the tumor etiology is required. Specific single nucleotides polymorphisms (SNPs) rs4977756 (CDKN2A/B), rs6010620 (RTEL1), rs498872 (PHLDB1), rs2736100 (TERT), and rs4295627 (CCDC26) have been associated with glioma susceptibility and are potential risk biomarkers. This study aimed to analyze five SNPs associated with glioma susceptibility, in the Portuguese population. SNPs were genotyped using the Sequenom MassARRAY platform in 127 gliomas and 180 controls. Unconditional logistic regression models were used to calculate odds ratio (OR) and 95% confidence intervals. The false-positive report probability was also assessed. The associations between polymorphisms and survival were evaluated using the log-rank test. It was found that the AG and GG genotypes of the rs4977756 (CDKN2A/B) were associated with an increased risk of gliomas (OR 1.85 and OR 2.38) and glioblastomas (OR 2.77 and OR 3.94). The GA genotype of the rs6010620 (RTEL1) was associated with a decreased risk of glioblastomas (OR 0.45). We also observed that the GA genotype of the rs498872 (PHLDB1) was associated with an increased risk of gliomas (OR 2.92) and glioblastomas (OR 2.39). No significant risk associations were found for the rs2736100 (TERT) and rs4295627 (CCDC26). In addition, the genotype AA of the rs498872 (PHLDB1) was associated with poor overall survival of gliomas patients (AA vs. GA, p = 0.037). The rs6010620 (RTEL1), rs4977756 (CDKN2A/B), and rs498872 (PHLDB1) are associated with glioma risk in the Portuguese population and these data may contribute to understanding gliomas etiology.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , DNA Helicases/genética , Glioma/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas do Tecido Nervoso/genética , Adulto , Alelos , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , DNA Helicases/metabolismo , Etnicidade , Feminino , Frequência do Gene/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Glioblastoma/genética , Glioma/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Razão de Chances , Polimorfismo de Nucleotídeo Único/genética , Portugal , Fatores de Risco
17.
Acta Biochim Biophys Sin (Shanghai) ; 52(12): 1394-1403, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33200790

RESUMO

Human glioma is the most common primary brain tumor and is associated with high morbidity and mortality. Aberrant expressions of microRNAs (miRNAs) are involved in glioma progression. In the present study, we aimed to elucidate the roles of miR-4530 in the pathogenesis of gliomas. miR-4530 expression was examined in human glioma clinical tissues and cell lines including U251 and T98G. The target gene of miR-4530, RTEL1, was predicted with online tools and validated by luciferase reporter assay. Lentivirus infection, transfection of plasmids, and miRNA mimics were used to manipulate gene expression. Cell proliferation was determined using the CCK-8 method, and migration and invasion assays were determined with transwell experiments. Colony formation was measured by crystal violet staining, while apoptosis was determined by Annexin V/PI staining. The anti-tumor effects of miR-4530 were evaluated in nude mice xenografted using U251 cells. Our results showed that miR-4530 was significantly down-regulated in human glioma tissues and cell lines. miR-4530 over-expression inhibited the malignant behaviors of U251 and T98G cells, including reduced proliferation, diminished colony formation, migration and invasion, and increased apoptosis. Further mechanistic investigations revealed that RTEL1 is a direct functional target of miR-4530 in gliomas, and its over-expression remarkably reverses the effects of miR-4530 mimics on inhibiting these malignant behaviors. In addition, miR-4530 over-expression inhibited the growth of xenografted U251 glioma in nude mice. Therefore, miR-4530 acts as a tumor-suppressor gene and inhibits the malignant biological behaviors of human glioma cells, which is associated with directly targeting RTEL1. The miR-4530/RTEL1 axis is a potential therapeutic target for gliomas.


Assuntos
Neoplasias Encefálicas/genética , DNA Helicases/metabolismo , Glioma/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Apoptose/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Glioma/metabolismo , Glioma/patologia , Humanos , Camundongos Nus , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Transgenic Res ; 27(6): 571-578, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30196476

RESUMO

Regulator of telomere length 1 (RTEL1) DNA helicase has been demonstrated to be essential for the maintenance of telomeres and genomic stability. This function of RTEL1 could be required for protecting stem cells from genomic mutations as suggested by its selective expression in stem cell-zones, as well as by RTEL1 mutations identified in Hoyeraal-Hreidarsson syndrome, a severe dyskeratosis congenita that targets primarily stem cell compartments. As a first step to establish a role of RTEL1 in stem cells, we generated an Rtel1CreERT2 mouse allele in which a tamoxifen-inducible Cre (CreERT2) cDNA was specifically knocked into the Rtel1 genomic locus and controlled by the endogenous Rtel1 regulatory elements. By crossing with a Cre-dependent LacZ reporter mouse strain (R26RLacZ), we further demonstrated that Cre activity in Rtel1CreERT2 mice could be specifically induced by tamoxifen, which allowed the fate of RTEL1+ cells to be traced at various stages of development. Using this tracing assay, we showed for the first time that RTEL1+ cells in the intestine and the testis can act as stem cells that have the capacity to self-renew and differentiate into progeny cells. Therefore, the Rtel1CreERT2 mice generated in this study will be a valuable transgenic tool to explore the function of RTEL1 in stem cells.


Assuntos
Linhagem da Célula , DNA Helicases/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes/métodos , Genes Reporter , Integrases/metabolismo , Células-Tronco/metabolismo , Animais , Células Cultivadas , DNA Helicases/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Integrases/genética , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco/citologia
19.
Am J Med Genet A ; 176(6): 1432-1437, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29696773

RESUMO

Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome caused by germline mutations in telomere biology genes. Patients have extremely short telomeres for their age and a complex phenotype including oral leukoplakia, abnormal skin pigmentation, and dysplastic nails in addition to bone marrow failure, pulmonary fibrosis, stenosis of the esophagus, lacrimal ducts and urethra, developmental anomalies, and high risk of cancer. We evaluated a patient with features of DC, mood dysregulation, diabetes, and lack of pubertal development. Family history was not available but genome-wide genotyping was consistent with consanguinity. Whole exome sequencing identified 82 variants of interest in 80 genes based on the following criteria: homozygous, <0.1% minor allele frequency in public and in-house databases, nonsynonymous, and predicted deleterious by multiple in silico prediction programs. Six genes were identified likely contributory to the clinical presentation. The cause of DC is likely due to homozygous splice site variants in regulator of telomere elongation helicase 1, a known DC and telomere biology gene. A homozygous, missense variant in tryptophan hydroxylase 1 may be clinically important as this gene encodes the rate limiting step in serotonin biosynthesis, a biologic pathway connected with mood disorders. Four additional genes (SCN4A, LRP4, GDAP1L1, and SPTBN5) had rare, missense homozygous variants that we speculate may contribute to portions of the clinical phenotype. This case illustrates the value of conducting detailed clinical and genomic evaluations on rare patients in order to identify new areas of research into the functional consequences of rare variants and their contribution to human disease.


Assuntos
DNA Helicases/genética , Disceratose Congênita/etiologia , Transtornos do Humor/etiologia , Triptofano Hidroxilase/genética , Adolescente , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/genética , Disceratose Congênita/genética , Homozigoto , Humanos , Hipotireoidismo/etiologia , Hipotireoidismo/genética , Masculino , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/genética , Fenótipo , Sequenciamento Completo do Genoma , Adulto Jovem
20.
Hum Mutat ; 37(5): 469-72, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26847928

RESUMO

The DNA helicase RTEL1 participates in telomere maintenance and genome stability. Biallelic mutations in the RTEL1 gene account for the severe telomere biology disorder characteristic of the Hoyeraal-Hreidarsson syndrome (HH). Here, we report a HH patient (P4) carrying two novel compound heterozygous mutations in RTEL1: a premature stop codon (c.949A>T, p.Lys317*) and an intronic deletion leading to an exon skipping and an in-frame deletion of 25 amino-acids (p.Ile398_Lys422). P4's cells exhibit short and dysfunctional telomeres similarly to other RTEL1-deficient patients. 3D structure predictions indicated that the p.Ile398_Lys422 deletion affects a part of the helicase ARCH domain, which lines the pore formed with the core HD and the iron-sulfur cluster domains and is highly specific of sequences from the eukaryotic XPD family members.


Assuntos
DNA Helicases/química , DNA Helicases/genética , Disceratose Congênita/genética , Retardo do Crescimento Fetal/genética , Deficiência Intelectual/genética , Microcefalia/genética , Mutação , Criança , Códon de Terminação , Feminino , Humanos , Modelos Moleculares , Domínios Proteicos , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA