Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Foodborne Pathog Dis ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563789

RESUMO

The global food trade provides a means of disseminating antimicrobial resistant (AMR) bacteria and genes. Using selective media, carbapenem-resistant species of Enterobacterales (Providencia sp. and Citrobacter sp.), were detected in a single package of imported frozen shrimp purchased from a grocery store in Ohio, USA. Polymerase chain reaction confirmed that both isolates harbored blaNDM-1 genes. Following PacBio long read sequencing, the sequences were annotated using the NCBI Prokaryotic Genome Annotation Pipeline. The blaNDM-1 genes were found in IncC plasmids, each with different antimicrobial resistance island configuration. We found that the blaNDM-1 AMR islands had close relationships with previously reported environmental, food, and clinical isolates detected in Asia and the United States, highlighting the importance of the food chain in the global dissemination of antimicrobial resistance.

2.
Ecotoxicol Environ Saf ; 263: 115232, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37429089

RESUMO

Polyolefin plastics, such as polyethylene (PE) and polystyrene (PS), are the most widely used synthetic plastics in our daily life. However, the chemical structure of polyolefin plastics is composed of carbon-carbon (C-C) bonds, which is extremely stable and makes polyolefin plastics recalcitrant to degradation. The growing accumulation of plastic waste has caused serious environmental pollution and has become a global environmental concern. In this study, we isolated a unique Raoultella sp. DY2415 strain from petroleum-contaminated soil that can degrade PE and PS film. After 60 d of incubation with strain DY2415, the weight of the UV-irradiated PE (UVPE) film and PS film decreased by 8% and 2%, respectively. Apparent microbial colonization and holes on the surface of the films were observed by scanning electron microscopy (SEM). Furthermore, the Fourier transform infrared spectrometer (FTIR) results showed that new oxygen-containing functional groups such as -OH and -CO were introduced into the polyolefin molecular structure. Potential enzymes that may be involved in the biodegradation of polyolefin plastics were analyzed. These results demonstrate that Raoultella sp. DY2415 has the ability to degrade polyolefin plastics and provide a basis for further investigating the biodegradation mechanism.


Assuntos
Petróleo , Poliestirenos , Poliestirenos/metabolismo , Polietileno/química , Solo , Enterobacteriaceae , Biodegradação Ambiental , Carbono , Plásticos/metabolismo
3.
Arch Microbiol ; 204(9): 551, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35951138

RESUMO

The enzymes are biological macromolecules that biocatalyze certain biochemical reactions without undergoing any modification or degradation at the end of the reaction. In this work, we constructed a recombinant novel Raoultella sp. NX-TZ-3-15 strain that produces heparinase with a maltose binding tag to enhance its production and activity. Additionally, MBP-heparinase was purified and its enzymatic capabilities are investigated to determine its industrial application. Moreover, the recombinant plasmid encoding the MBP-heparinase fusion protein was effectively generated and purified to a high purity. According to SDS-PAGE analysis, the MBP-heparinase has a molecular weight of around 70 kDa and the majority of it being soluble with a maximum activity of 5386 U/L. It has also been noted that the three ions of Ca2 + , Co2 + , and Mg2 + can have an effect on heparinase activities, with Mg2 + being the most noticeable, increasing by about 85%, while Cu2 + , Fe2 + , Zn2 + having an inhibitory effect on heparinase activities. Further investigations on the mechanistic action, structural features, and genomes of Raoultella sp. NX-TZ-3-15 heparinase synthesis are required for industrial-scale manufacturing.


Assuntos
Escherichia coli , Polissacarídeo-Liases , Enterobacteriaceae/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Heparina Liase/química , Heparina Liase/genética , Heparina Liase/metabolismo , Plasmídeos/genética , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo
4.
Appl Microbiol Biotechnol ; 103(9): 3887-3897, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30820635

RESUMO

Heavy metal pollution in agricultural soils has become a widespread serious problem with the rapid industrialization and urbanization in the past two decades. Cadmium (Cd2+) is of the most concern in soils due to its high toxicity. It is necessary to develop remediation strategies to remove or neutralize its toxic effects in Cd-contaminated soil. Microbial bioremediation is a promising technology to treat heavy metal-contaminated soils. In this study, Cd-resistant bacterium, isolated from heavy metal-polluted soil in Southern China, was characterized as Raoultella sp. strain X13 on the basis of its biochemical profile and 16S rRNA. We investigated the characterization of Cd2+ distribution in different cellular compartments after Cd2+ uptake. Cd2+ uptake by strain X13 was mainly by ion exchange and chelation binding tightly to the cell wall. In addition, X13 plant growth-promoting characteristics suggested that X13 could solubilize phosphate and produce indole acetic acid. Pot experiments for the remediation of Cd-contaminated soil in situ by X13 inoculation demonstrated that X13 application to Cd-contaminated soils significantly promoted pak choi growth and improved production. We also found that X13 substantially reduced the Cd2+ bioavailability for pak choi. Therefore, strain X13 is an effective treatment for potential application in Cd2+ remediation as well as for sustainable agronomic production programs in Cd-contaminated soils.


Assuntos
Inoculantes Agrícolas/metabolismo , Brassica/crescimento & desenvolvimento , Cádmio/metabolismo , Enterobacteriaceae/metabolismo , Poluentes do Solo/metabolismo , Inoculantes Agrícolas/classificação , Inoculantes Agrícolas/genética , Inoculantes Agrícolas/isolamento & purificação , Brassica/metabolismo , Brassica/microbiologia , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Ácidos Indolacéticos/metabolismo , Fosfatos/metabolismo , Solo/química , Microbiologia do Solo
5.
Chemosphere ; 352: 141287, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272139

RESUMO

Harmful algal blooms (HABs) due to eutrophication are becoming a serious ecological disaster worldwide, threatening human health and the optimal balance of aquatic ecosystems. The traditional approaches to eradicate HABs yield several drawbacks in practical application, while microbial algicidal technology is garnering mounting recognition due to its high efficiency, eco-friendliness, and low cost. In our previous study, we isolated a bacterium strain Raoultella sp. S1 from eutrophic water with high efficiency of algicidal properties. This study further investigated the flocculation and inactivation efficiency of S1 on Microcystis aeruginosa at different eutrophic stages by customizing the algal cell densities. The supernatant extract of S1 strain exhibited remarkable flocculation and inactivation effects against low (1 × 106 cell/mL)and medium (2.7 × 106 cell/mL)concentrations of algal cells, but unexceptional for higher densities. The results further revealed that algal cells at low and medium counts manifested a more apparent antioxidant defense response, while the photosynthetic efficiency and relative electron transport rate were considerably reduced within 24 h. TEM observations confirmed the disruption of thylakoid membranes and cell structure of algal cells by algicidal substances. Moreover, TMT proteomics revealed alterations in protein metabolic pathways of algal cells during the flocculation and lysis stages at the molecular biological level. This signified that the disruption of the photosynthetic system is the core algicidal mechanism of S1 supernatant. In contrast, the photosynthetic metabolic pathways in the HABs were significantly upregulated, increasing the energy supply for the NADPH dehydrogenation process and the upregulation of ATPases in oxidative phosphorylation. Insufficient energy provided by NADPH resulted in a dwindled electron transport rate, stagnation of carbon fixation in dark reactions, and blockage of light energy conversion into chemical energy. Nonetheless, carbohydrate metabolism (gluconeogenesis and glycolysis) proteins were down-regulated and hampered DNA replication and repair. This study aided in unveiling the bacterial management of eutrophication by Raoultella sp. S1 and further arrayed the proteomic mechanism of algal apoptosis.


Assuntos
Microcystis , Humanos , Microcystis/metabolismo , Proteômica , Ecossistema , NADP/metabolismo , Proliferação Nociva de Algas , Enterobacteriaceae
6.
Sci Total Environ ; 930: 172619, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38649045

RESUMO

To obtain a multifunctional bacterium that can effectively degrade polyethylene (PE) and sulfonamide antibiotics (SAs), PE and SAs were selected as the primary research objects. Multifunctional degrading bacteria were isolated and screened from an environment in which plastics and antibiotics have existed for a long time. An efficient degrading strain, Raoultella sp., was screened by measuring the degradation performance of PE and SAs. We analyzed the changes in the microbial community of indigenous bacteria using 16S rRNA. After 60 d of degradation at 28 °C, the Raoultella strain to PE degradation rate was 4.20 %. The SA degradation rates were 96 % (sulfonathiazole, (ST)), 86 % (sulfamerazine, (SM)), 72 % (sulfamethazine, (SM2)) and 64 % (sulfamethoxazole, (SMX)), respectively. This bacterium increases the surface roughness of PE plastic films and produces numerous gullies, pits, and folds. In addition, after 60 d, the contact angle of the plastic film decreased from 92.965° to 70.205°, indicating a decrease in hydrophobicity. High-throughput sequencing analysis of the degrading bacteria revealed that the Raoultella strain encodes enzymes involved in PE and SA degradation. The results of this study not only provide a theoretical basis for further study of the degradation mechanism of multifunctional and efficient degrading bacteria but also provide potential strain resources for the biodegradation of waste plastics and antibiotics in the environment.


Assuntos
Antibacterianos , Biodegradação Ambiental , Polietileno , Microbiologia do Solo , Poluentes do Solo , Antibacterianos/metabolismo , Poluentes do Solo/metabolismo , Polietileno/metabolismo , RNA Ribossômico 16S , Solo/química , Bactérias/metabolismo
7.
Microorganisms ; 8(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255676

RESUMO

Erythromycin (EM), a macrolide antibiotic, by influencing the biodiversity of microorganisms, might change the catabolic activity of the entire soil microbial community. Hence, the goal of this study was to determine the metabolic biodiversity in soil treated with EM (1 and 10 mg/kg soil) using the community-level physiological profiling (CLPP) method during a 90-day experiment. In addition, the effect of soil inoculation with antibiotic-resistant Raoultella sp. strain MC3 on CLPP was evaluated. The resistance and resilience concept as well as multifactorial analysis of data was exploited to interpret the outcomes obtained. EM negatively affected the metabolic microbial activity, as indicated by the values of the CLPP indices, i.e., microbial activity expressed as the average well-color development (AWCD), substrate richness (R), the Shannon-Wiener (H) and evenness (E) indices and the AWCD values for the six groups of carbon substrate present in EcoPlates until 15 days. The introduction of strain MC3 into soil increased the degradative activity of soil microorganisms in comparison with non-inoculated control. In contrast, at the consecutive sampling days, an increase in the values of the CLPP parameters was observed, especially for EM-10 + MC3-treated soil. Considering the average values of the resistance index for all of the measurement days, the resistance of the CLPP indices and the AWCD values for carbon substrate groups were categorized as follows: E > H > R > AWCD and polymers > amino acids > carbohydrates > miscellaneous > amines > carboxylic acids. The obtained results suggest a low level of resistance of soil microorganisms to EM and/or strain MC3 at the beginning of the exposure time, but the microbial community exhibited the ability to recover its initial decrease in catabolic activity over the experimental period. Despite the short-term effects, the balance of the soil ecosystem may be disturbed.

8.
3 Biotech ; 9(4): 120, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30854280

RESUMO

A novel cadmium-resistant bacterium, Raoultella sp. strain X13, recently isolated from heavy metal-contaminated soil, and this strain can synthesize CdS quantum dots using cadmium nitrate [Cd(NO4)2] and l-cysteine. Biomineralization of CdS by strain X13 can efficiently remove cadmium from aqueous solution. To illuminate the molecular mechanisms for the biosynthesis of CdS nanoparticle, the complete genome of Raoultella sp. strain X13 was sequenced. The whole genome sequence comprises a circular chromosome and a circular plasmid. Cysteine desulfhydrase smCSE has been previously found to be associated with the synthesis of CdS quantum dots. Bioinformatics analysis indicated that the genome of Raoultella sp. strain X13 encodes five putative cysteine desulfhydrases and all of them are located in the chromosome. The genome information may help us to determine the molecular mechanisms of the synthesis of CdS quantum dots and potentially enable us to engineer this microorganism for applications in biotechnology.

9.
Folia Microbiol (Praha) ; 63(3): 273-282, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29127620

RESUMO

The bacterial strain KDF8 capable of growth in the presence of diclofenac and codeine analgesics was obtained after chemical mutagenesis of nature isolates from polluted soils. The strain KDF8 was identified as Raoultella sp. based on its morphology, biochemical properties, and 16S rRNA gene sequence. It was deposited in the Czech Collection of Microorganisms under the number CCM 8678. A growing culture efficiently removed diclofenac (92% removal) and partially also codeine (about 30% degradation) from culture supernatants within 72 h at 28 °C. The degradation of six analgesics by the whole cell catalyst was investigated in detail. The maximum degradation of diclofenac (91%) by the catalyst was achieved at pHINI of 7 (1 g/L diclofenac). The specific removal rate at high concentrations of diclofenac and codeine increased up to 16.5 mg/gCDW per h and 5.1 mg/gCDW per h, respectively. HPLC analysis identified 4'-hydroxydiclofenac as a major metabolite of diclofenac transformation and 14-hydroxycodeinone as codeine transformation product. The analgesics ibuprofen and ketoprofen were also removed, albeit to a lower extent of 3.2 and 2.0 mg/gCDW per h, respectively. Naproxen and mefenamic acid were not degraded.


Assuntos
Analgésicos/metabolismo , Enterobacteriaceae/metabolismo , Poluentes Químicos da Água/metabolismo , Analgésicos/toxicidade , Codeína/metabolismo , Codeína/toxicidade , DNA Bacteriano/genética , Diclofenaco/metabolismo , Diclofenaco/toxicidade , Enterobacteriaceae/classificação , Enterobacteriaceae/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Viabilidade Microbiana/efeitos dos fármacos , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo , Temperatura
10.
Acta méd. peru ; 39(1): 79-83, ene.-mar. 2022. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1383390

RESUMO

RESUMEN Raoultella Planticola es una bacteria que se ha descrito recientemente en la literatura como patógeno emergente de infecciones urinarias, abdominales y pulmonares. A continuación, se presenta el caso de un paciente de 63 años con antecedente de sobrepeso y dislipidemia hospitalizado en contexto de neumonía por SARS CoV2 quien presenta sobreinfección por R. Planticola y E. Aerogenes. Recibió manejo con Cefepime por 7 días con adecuada evolución clínica.


ABSTRACT Raoultella planticola is a bacterium that has been recently described in the literature as an emerging pathogen that causes urinary, abdominal, and lung infections. We present the case of a 63-year-old overweight and with dyslipidemia that was hospitalized because of a SARS-CoV-2 infection. He developed R. planticola and E. aerogenes superinfections. He was treated with cefepime for seven days, and he recovered uneventfully.

11.
Huan Jing Ke Xue ; 37(7): 2673-2680, 2016 Jul 08.
Artigo em Zh | MEDLINE | ID: mdl-29964478

RESUMO

The genus of Raoultella belongs to the family of Enterobacteriaceae, and some strains of Raoultella sp. have the function of degrading chemical pollutants in the environment. A Raoultella sp. strain was isolated from activated sludge through enrichment cultured with heterotrophic nitrification medium. This strain was named Raoultella sp. sari01. Single-factor and response surface methodology experiments results showed that efficient heterotrophic nitrification of strain sari01 occurred with sodium citrate as the carbon source, at pH of 7.0-7.5, temperature of 30℃, C/N ratio of 15, inoculation volume of 7.5% and loading volume of 50 mL, while the removal rate of nitrogen was 99.9%, of which 33.7% was converted to gaseous product and escaped to air, and the residual nitrogen was fixed in cell biomass. Using nitrite and nitrate as the sole nitrogen source, the nitrogen degradation ratios were 98.4% and 65.2%, respectively. Hence, strain sari01 could remove nitrogen by heterotrophic nitrification-aerobic denitrification independently, quickly and effectively, which demonstrated that strain sari01 has the potential to be used in wastewater treatment.


Assuntos
Desnitrificação , Enterobacteriaceae/metabolismo , Processos Heterotróficos , Nitrificação , Aerobiose , Enterobacteriaceae/isolamento & purificação , Nitritos/metabolismo , Nitrogênio/metabolismo , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA