Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
BMC Evol Biol ; 16(1): 230, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782796

RESUMO

BACKGROUND: Pigeons and doves (Columbiformes) are one of the oldest and most diverse extant lineages of birds. However, the nature and timing of the group's evolutionary radiation remains poorly resolved, despite recent advances in DNA sequencing and assembly and the growing database of pigeon mitochondrial genomes. One challenge has been to generate comparative data from the large number of extinct pigeon lineages, some of which are morphologically unique and therefore difficult to place in a phylogenetic context. RESULTS: We used ancient DNA and next generation sequencing approaches to assemble complete mitochondrial genomes for eleven pigeons, including the extinct Ryukyu wood pigeon (Columba jouyi), the thick-billed ground dove (Alopecoenas salamonis), the spotted green pigeon (Caloenas maculata), the Rodrigues solitaire (Pezophaps solitaria), and the dodo (Raphus cucullatus). We used a Bayesian approach to infer the evolutionary relationships among 24 species of living and extinct pigeons and doves. CONCLUSIONS: Our analyses indicate that the earliest radiation of the Columbidae crown group most likely occurred during the Oligocene, with continued divergence of major clades into the Miocene, suggesting that diversification within the Columbidae occurred more recently than has been reported previously.


Assuntos
Evolução Biológica , Columbidae/genética , Genoma Mitocondrial , Animais , Sequência de Bases , Teorema de Bayes , Columbidae/classificação , Extinção Biológica , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Análise de Sequência de DNA
2.
Conserv Biol ; 27(6): 1478-80, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23992554

RESUMO

The Dodo was last sighted on the inshore island of Ile d'Ambre in 1662, nearly 25 years after the previous sighting on the mainland of Mauritius. It has been suggested that its survival on the inshore island is representative of the refuge effect. Understanding what constitutes significant persistence is fundamental to conservation. I tested the refuge-effect hypothesis for the persistence of the Dodo (Raphus cucullatus) on an inshore island beyond that of the mainland population. For a location to be considered a refuge, most current definitions suggest that both spatial and temporal isolation from the cause of disturbance are required. These results suggest the island was not a refuge for the Dodo because the sighting in 1662 was not temporally isolated from that of the mainland sightings. Furthermore, with only approximately 350 m separating Ile d'Ambre from the mainland of Mauritius, it is unlikely this population of Dodos was spatially isolated. Hipótesis del Efecto Refugio y la Desaparición del Dodo.


Assuntos
Columbiformes/fisiologia , Conservação dos Recursos Naturais , Extinção Biológica , Animais , Ecossistema , Ilhas , Maurício , Isolamento Reprodutivo
3.
PeerJ ; 4: e1432, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26788418

RESUMO

The external appearance of the dodo (Raphus cucullatus, Linnaeus, 1758) has been a source of considerable intrigue, as contemporaneous accounts or depictions are rare. The body mass of the dodo has been particularly contentious, with the flightless pigeon alternatively reconstructed as slim or fat depending upon the skeletal metric used as the basis for mass prediction. Resolving this dichotomy and obtaining a reliable estimate for mass is essential before future analyses regarding dodo life history, physiology or biomechanics can be conducted. Previous mass estimates of the dodo have relied upon predictive equations based upon hind limb dimensions of extant pigeons. Yet the hind limb proportions of dodo have been found to differ considerably from those of their modern relatives, particularly with regards to midshaft diameter. Therefore, application of predictive equations to unusually robust fossil skeletal elements may bias mass estimates. We present a whole-body computed tomography (CT) -based mass estimation technique for application to the dodo. We generate 3D volumetric renders of the articulated skeletons of 20 species of extant pigeons, and wrap minimum-fit 'convex hulls' around their bony extremities. Convex hull volume is subsequently regressed against mass to generate predictive models based upon whole skeletons. Our best-performing predictive model is characterized by high correlation coefficients and low mean squared error (a = - 2.31, b = 0.90, r (2) = 0.97, MSE = 0.0046). When applied to articulated composite skeletons of the dodo (National Museums Scotland, NMS.Z.1993.13; Natural History Museum, NHMUK A.9040 and S/1988.50.1), we estimate eviscerated body masses of 8-10.8 kg. When accounting for missing soft tissues, this may equate to live masses of 10.6-14.3 kg. Mass predictions presented here overlap at the lower end of those previously published, and support recent suggestions of a relatively slim dodo. CT-based reconstructions provide a means of objectively estimating mass and body segment properties of extinct species using whole articulated skeletons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA