RESUMO
CDK2 is a core cell-cycle kinase that phosphorylates many substrates to drive progression through the cell cycle. CDK2 is hyperactivated in multiple cancers and is therefore an attractive therapeutic target. Here, we use several CDK2 inhibitors in clinical development to interrogate CDK2 substrate phosphorylation, cell-cycle progression, and drug adaptation in preclinical models. Whereas CDK1 is known to compensate for loss of CDK2 in Cdk2-/- mice, this is not true of acute inhibition of CDK2. Upon CDK2 inhibition, cells exhibit a rapid loss of substrate phosphorylation that rebounds within several hours. CDK4/6 activity backstops inhibition of CDK2 and sustains the proliferative program by maintaining Rb1 hyperphosphorylation, active E2F transcription, and cyclin A2 expression, enabling re-activation of CDK2 in the presence of drug. Our results augment our understanding of CDK plasticity and indicate that co-inhibition of CDK2 and CDK4/6 may be required to suppress adaptation to CDK2 inhibitors currently under clinical assessment.
Assuntos
Proteínas de Ciclo Celular , Quinases Ciclina-Dependentes , Animais , Camundongos , Quinases Ciclina-Dependentes/metabolismo , Ciclo Celular/fisiologia , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fosforilação , Divisão CelularRESUMO
We performed the first proteogenomic study on a prospectively collected colon cancer cohort. Comparative proteomic and phosphoproteomic analysis of paired tumor and normal adjacent tissues produced a catalog of colon cancer-associated proteins and phosphosites, including known and putative new biomarkers, drug targets, and cancer/testis antigens. Proteogenomic integration not only prioritized genomically inferred targets, such as copy-number drivers and mutation-derived neoantigens, but also yielded novel findings. Phosphoproteomics data associated Rb phosphorylation with increased proliferation and decreased apoptosis in colon cancer, which explains why this classical tumor suppressor is amplified in colon tumors and suggests a rationale for targeting Rb phosphorylation in colon cancer. Proteomics identified an association between decreased CD8 T cell infiltration and increased glycolysis in microsatellite instability-high (MSI-H) tumors, suggesting glycolysis as a potential target to overcome the resistance of MSI-H tumors to immune checkpoint blockade. Proteogenomics presents new avenues for biological discoveries and therapeutic development.
Assuntos
Neoplasias do Colo/genética , Neoplasias do Colo/terapia , Proteogenômica/métodos , Apoptose/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos , Proliferação de Células/genética , Neoplasias do Colo/metabolismo , Genômica/métodos , Glicólise , Humanos , Instabilidade de Microssatélites , Mutação , Fosforilação , Estudos Prospectivos , Proteômica/métodos , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismoRESUMO
The interaction of RB with chromatin is key to understanding its molecular functions. Here, for first time, we identify the full spectrum of chromatin-bound RB. Rather than exclusively binding promoters, as is often described, RB targets three fundamentally different types of loci (promoters, enhancers, and insulators), which are largely distinguishable by the mutually exclusive presence of E2F1, c-Jun, and CTCF. While E2F/DP facilitates RB association with promoters, AP-1 recruits RB to enhancers. Although phosphorylation in CDK sites is often portrayed as releasing RB from chromatin, we show that the cell cycle redistributes RB so that it enriches at promoters in G1 and at non-promoter sites in cycling cells. RB-bound promoters include the classic E2F-targets and are similar between lineages, but RB-bound enhancers associate with different categories of genes and vary between cell types. Thus, RB has a well-preserved role controlling E2F in G1, and it targets cell-type-specific enhancers and CTCF sites when cells enter S-phase.
Assuntos
Cromatina , Proteína do Retinoblastoma , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Regiões Promotoras Genéticas , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Fator de Transcrição AP-1/genéticaRESUMO
The cyclin-dependent kinases Cdk4 and Cdk6 form complexes with D-type cyclins to drive cell proliferation. A well-known target of cyclin D-Cdk4,6 is the retinoblastoma protein Rb, which inhibits cell-cycle progression until its inactivation by phosphorylation. However, the role of Rb phosphorylation by cyclin D-Cdk4,6 in cell-cycle progression is unclear because Rb can be phosphorylated by other cyclin-Cdks, and cyclin D-Cdk4,6 has other targets involved in cell division. Here, we show that cyclin D-Cdk4,6 docks one side of an alpha-helix in the Rb C terminus, which is not recognized by cyclins E, A, and B. This helix-based docking mechanism is shared by the p107 and p130 Rb-family members across metazoans. Mutation of the Rb C-terminal helix prevents its phosphorylation, promotes G1 arrest, and enhances Rb's tumor suppressive function. Our work conclusively demonstrates that the cyclin D-Rb interaction drives cell division and expands the diversity of known cyclin-based protein docking mechanisms.
Assuntos
Proliferação de Células/genética , Ciclina D/genética , Mapas de Interação de Proteínas/genética , Proteína do Retinoblastoma/genética , Ciclo Celular/genética , Proteína Substrato Associada a Crk/genética , Ciclina D/química , Quinase 4 Dependente de Ciclina/química , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/química , Quinase 6 Dependente de Ciclina/genética , Ciclinas/genética , Fase G1/genética , Humanos , Simulação de Acoplamento Molecular , Fosforilação/genética , Ligação Proteica/genética , Conformação Proteica em alfa-Hélice/genética , Proteína do Retinoblastoma/química , Proteína p107 Retinoblastoma-Like/genética , Fase S/genéticaRESUMO
Aberrant expression of programmed death ligand-1 (PD-L1) in tumor cells promotes cancer progression by suppressing cancer immunity. The retinoblastoma protein RB is a tumor suppressor known to regulate the cell cycle, DNA damage response, and differentiation. Here, we demonstrate that RB interacts with nuclear factor κB (NF-κB) protein p65 and that their interaction is primarily dependent on CDK4/6-mediated serine-249/threonine-252 (S249/T252) phosphorylation of RB. RNA-seq analysis shows a subset of NF-κB pathway genes including PD-L1 are selectively upregulated by RB knockdown or CDK4/6 inhibitor. S249/T252-phosphorylated RB inversely correlates with PD-L1 expression in patient samples. Expression of a RB-derived S249/T252 phosphorylation-mimetic peptide suppresses radiotherapy-induced upregulation of PD-L1 and augments therapeutic efficacy of radiation in vivo. Our findings reveal a previously unrecognized tumor suppressor function of hyperphosphorylated RB in suppressing NF-κB activity and PD-L1 expression and suggest that the RB-NF-κB axis can be exploited to overcome cancer immune evasion triggered by conventional or targeted therapies.
Assuntos
Antígeno B7-H1/metabolismo , Neoplasias da Próstata/metabolismo , Proteína do Retinoblastoma/metabolismo , Fator de Transcrição RelA/metabolismo , Evasão Tumoral , Animais , Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Quimiorradioterapia/métodos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Células PC-3 , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/terapia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Tolerância a Radiação , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/imunologia , Transdução de Sinais , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Autophagy of glycogen (glycophagy) is crucial for the maintenance of cellular glucose homeostasis and physiology in mammals. STBD1 can serve as an autophagy receptor to mediate glycophagy by specifically recognizing glycogen and relevant key autophagic factors, but with poorly understood mechanisms. Here, we systematically characterize the interactions of STBD1 with glycogen and related saccharides, and determine the crystal structure of the STBD1 CBM20 domain with maltotetraose, uncovering a unique binding mode involving two different oligosaccharide-binding sites adopted by STBD1 CBM20 for recognizing glycogen. In addition, we demonstrate that the LC3-interacting region (LIR) motif of STBD1 can selectively bind to six mammalian ATG8 family members. We elucidate the detailed molecular mechanism underlying the selective interactions of STBD1 with ATG8 family proteins by solving the STBD1 LIR/GABARAPL1 complex structure. Importantly, our cell-based assays reveal that both the STBD1 LIR/GABARAPL1 interaction and the intact two oligosaccharide binding sites of STBD1 CBM20 are essential for the effective association of STBD1, GABARAPL1, and glycogen in cells. Finally, through mass spectrometry, biochemical, and structural modeling analyses, we unveil that STBD1 can directly bind to the Claw domain of RB1CC1 through its LIR, thereby recruiting the key autophagy initiation factor RB1CC1. In all, our findings provide mechanistic insights into the recognitions of glycogen, ATG8 family proteins, and RB1CC1 by STBD1 and shed light on the potential working mechanism of STBD1-mediated glycophagy.
Assuntos
Família da Proteína 8 Relacionada à Autofagia , Autofagia , Glicogênio , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/fisiologia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/química , Sítios de Ligação , Cristalografia por Raios X , Glicogênio/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Modelos Moleculares , Ligação ProteicaRESUMO
TAX1BP1, a multifunctional autophagy adaptor, plays critical roles in different autophagy processes. As an autophagy receptor, TAX1BP1 can interact with RB1CC1, NAP1, and mammalian ATG8 family proteins to drive selective autophagy for relevant substrates. However, the mechanistic bases underpinning the specific interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins remain elusive. Here, we find that there are two distinct binding sites between TAX1BP1 and RB1CC1. In addition to the previously reported TAX1BP1 SKICH (skeletal muscle and kidney enriched inositol phosphatase (SKIP) carboxyl homology)/RB1CC1 coiled-coil interaction, the first coiled-coil domain of TAX1BP1 can directly bind to the extreme C-terminal coiled-coil and Claw region of RB1CC1. We determine the crystal structure of the TAX1BP1 SKICH/RB1CC1 coiled-coil complex and unravel the detailed binding mechanism of TAX1BP1 SKICH with RB1CC1. Moreover, we demonstrate that RB1CC1 and NAP1 are competitive in binding to the TAX1BP1 SKICH domain, but the presence of NAP1's FIP200-interacting region (FIR) motif can stabilize the ternary TAX1BP1/NAP1/RB1CC1 complex formation. Finally, we elucidate the molecular mechanism governing the selective interactions of TAX1BP1 with ATG8 family members by solving the structure of GABARAP in complex with the non-canonical LIR (LC3-interacting region) motif of TAX1BP1, which unveils a unique binding mode between LIR and ATG8 family protein. Collectively, our findings provide mechanistic insights into the interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins and are valuable for further understanding the working mode and function of TAX1BP1 in autophagy.
Assuntos
Autofagia , Proteínas de Ciclo Celular , Animais , Família da Proteína 8 Relacionada à Autofagia , Sítios de Ligação , Rim , MamíferosRESUMO
Cell cycle-dependent gene transcription is tightly controlled by the retinoblastoma (RB):E2F and DREAM complexes, which repress all cell cycle genes during quiescence. Cyclin-dependent kinase (CDK) phosphorylation of RB and DREAM allows for the expression of two gene sets. The first set of genes, with peak expression in G1/S, is activated by E2F transcription factors (TFs) and is required for DNA synthesis. The second set, with maximum expression during G2/M, is required for mitosis and is coordinated by the MuvB complex, together with B-MYB and Forkhead box M1 (FOXM1). In this review, we summarize the key findings that established the distinct control mechanisms regulating G1/S and G2/M gene expression in mammals and discuss recent advances in the understanding of the temporal control of these genes.
Assuntos
Proteínas de Ciclo Celular , Proteínas Repressoras , Animais , Proteínas Repressoras/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mitose , Quinases Ciclina-Dependentes/genética , Expressão Gênica , MamíferosRESUMO
A mosaic state arises when pathogenic variants are acquired in certain cell lineages during postzygotic development, and mosaic individuals may present with a generalized or localized phenotype. Here, we review the current state of knowledge regarding mosaicism for eight common tumor suppressor genes-NF1, NF2, TSC1, TSC2, PTEN, VHL, RB1, and TP53-and their related genetic syndromes/entities. We compare and discuss approaches for comprehensive diagnostic genetic testing, the spectrum of variant allele frequency, and disease severity. We also review affected individuals who have no mutation identified after conventional genetic analysis, as well as genotype-phenotype correlations and transmission risk for each tumor suppressor gene in full heterozygous and mosaic patients. This review provides new insight into similarities as well as marked differences regarding the appreciation of mosaicism in these tumor suppressor syndromes.
Assuntos
Genes Supressores de Tumor , Mosaicismo , Humanos , Mutação , Fenótipo , PrevalênciaRESUMO
UV radiation (UVR) has significant physiological effects on organisms living at or near the Earth's surface, yet the full suite of genes required for fitness of a photosynthetic organism in a UVR-rich environment remains unknown. This study reports a genome-wide fitness assessment of the genes that affect UVR tolerance under environmentally relevant UVR dosages in the model cyanobacterium Synechococcus elongatus PCC 7942. Our results highlight the importance of specific genes that encode proteins involved in DNA repair, glutathione synthesis, and the assembly and maintenance of photosystem II, as well as genes that encode hypothetical proteins and others without an obvious connection to canonical methods of UVR tolerance. Disruption of a gene that encodes a leucyl aminopeptidase (LAP) conferred the greatest UVR-specific decrease in fitness. Enzymatic assays demonstrated a strong pH-dependent affinity of the LAP for the dipeptide cysteinyl-glycine, suggesting an involvement in glutathione catabolism as a function of night-time cytosolic pH level. A low differential expression of the LAP gene under acute UVR exposure suggests that its relative importance would be overlooked in transcript-dependent screens. Subsequent experiments revealed a similar UVR-sensitivity phenotype in LAP knockouts of other organisms, indicating conservation of the functional role of LAPs in UVR tolerance.
Assuntos
Leucil Aminopeptidase , Raios Ultravioleta , Fotossíntese/efeitos da radiação , Reparo do DNA , GlutationaRESUMO
The Retinoblastoma (RB1) gene plays a pivotal role in osteogenic differentiation. Our previous study, employing temporal gene expression analysis using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), revealed the deregulation of osteogenic differentiation in patient-derived heterozygous RB1 mutant orbital adipose-derived mesenchymal stem cells (OAMSCs). The study revealed increased Alizarin Red staining, suggesting heightened mineralization without a corresponding increase in osteogenic lineage-specific gene expression. In this study, we performed high-throughput RNA sequencing on RB1+/+ and RB1+/- patient-derived OAMSCs differentiated towards the osteogenic lineage to investigate the pathways and molecular mechanisms. The pathway analysis revealed significant differences in cell proliferation, DNA repair, osteoblast differentiation, and cancer-related pathways in RB1+/- OAMSC-derived osteocytes. These findings were subsequently validated through functional assays. The study revealed that osteogenic differentiation is increased in RB1+/- cells, along with enhanced proliferation of the osteocytes. There were delayed but persistent DNA repair mechanisms in RB1+/- osteocytes, which were sufficient to maintain genomic integrity, thereby preventing or delaying the onset of tumors. This contrasts with our earlier observation of increased mineralization without corresponding gene expression changes, emphasizing the importance of high-throughput analysis over preselected gene set analysis in comprehending functional assay results.
RESUMO
BACKGROUND: Cellular angiofibroma, a rare benign mesenchymal neoplasm, is classified within the 13q/RB1 family of tumors due to morphological, immunohistochemical, and genetic similarities with spindle cell lipoma. Here, genetic data reveal pathogenetic heterogeneity in cellular angiofibroma. METHODS: Three cellular angiofibromas were studied using G-banding/Karyotyping, array comparative genomic hybridization, RNA sequencing, and direct cycling sequencing. RESULTS: The first tumor carried a del(13)(q12) together with heterozygous loss and minimal expression of the RB1 gene. Tumors two and three displayed chromosome 8 abnormalities associated with chimeras of the pleomorphic adenoma gene 1 (PLAG1). In tumor 2, the cathepsin B (CTSB) fused to PLAG1 (CTSB::PLAG1) while in tumor 3, the mir-99a-let-7c cluster host gene (MIR99AHG) fused to PLAG1 (MIR99AHG::PLAG1), both leading to elevated expression of PLAG1 and insulin growth factor 2. CONCLUSION: This study uncovers two genetic pathways contributing to the pathogenetic heterogeneity within cellular angiofibromas. The first aligns with the 13q/RB1 family of tumors and the second involves PLAG1-chimeras. These findings highlight the diverse genetic landscape of cellular angiofibromas, providing insights into potential diagnostic strategies.
Assuntos
Angiofibroma , Cromossomos Humanos Par 13 , Heterogeneidade Genética , Humanos , Angiofibroma/genética , Angiofibroma/patologia , Masculino , Cromossomos Humanos Par 13/genética , Proteínas de Ligação a DNA/genética , Adulto , Feminino , Proteínas de Ligação a Retinoblastoma/genética , MicroRNAs/genética , Ubiquitina-Proteína Ligases/genética , Pessoa de Meia-Idade , Hibridização Genômica Comparativa , Cromossomos Humanos Par 8/genética , Catepsina BRESUMO
RB1 deficiency leads to retinoblastoma (Rb), the most prevalent intraocular malignancy. Tumor-associated macrophages (TAMs) are related to local inflammation disorder, particularly by increasing cytokines and immune escape. Microglia, the unique resident macrophages for retinal homeostasis, are the most important immune cells of Rb. However, whether RB1 deficiency affects microglial function remain unknown. In this study, microglia were successfully differentiated from Rb patient- derived human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs), and then we investigated the function of RB1 in microglia by live imaging phagocytosis assay, immunofluorescence, RNA-seq, qRT-PCR, ELISA and retina organoids/microglia co-culturing. RB1 was abundantly expressed in microglia and predominantly located in the nucleus. We then examined the phagocytosis ability and secretion function of iMGs in vitro. We found that RB1 deficiency did not affect the expression of microglia-specific markers or the phagocytic abilities of these cells by live-imaging. Upon LPS stimulation, RB1-deficient microglia displayed enhanced innate immune responses, as evidenced by activated MAPK signaling pathway and elevated expression of IL-6 and TNF-α at both mRNA and protein levels, compared to wildtype microglia. Furthermore, retinal structure disruption was observed when retinal organoids were co-cultured with RB1-deficient microglia, highlighting the potential contribution of microglia to Rb development and potential therapeutic strategies for retinoblastoma.
Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias da Retina , Retinoblastoma , Humanos , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Microglia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Retina , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologiaRESUMO
BACKGROUND: Information transmission between primary tumor cells and immunocytes or stromal cells in distal organs is a critical factor in the formation of pre-metastatic niche (PMN). Understanding this mechanism is essential for developing effective therapeutic strategy against tumor metastasis. Our study aims to prove the hypothesis that circ-0034880-enriched tumor-derived extracellular vesicles (TEVs) mediate the formation of PMN and colorectal cancer liver metastasis (CRLM), and targeting circ-0034880-enriched TEVs might be an effective therapeutic strategy against PMN formation and CRLM. METHODS: We utilized qPCR and FISH to measure circRNAs expression levels in human CRC plasma, primary CRC tissues, and liver metastatic tissues. Additionally, we employed immunofluorescence, RNA sequencing, and in vivo experiments to assess the effect mechanism of circ-0034880-enriched TEVs on PMN formation and CRC metastasis. DARTS, CETSA and computational docking modeling were applied to explore the pharmacological effects of Ginsenoside Rb1 in impeding PMN formation. RESULTS: We found that circ-0034880 was highly enriched in plasma extracellular vesicles (EVs) derived from CRC patients and closely associated with CRLM. Functionally, circ-0034880-enriched TEVs entered the liver tissues and were absorbed by macrophages in the liver through bloodstream. Mechanically, TEVs-released circ-0034880 enhanced the activation of SPP1highCD206+ pro-tumor macrophages, reshaping the metastasis-supportive host stromal microenvironment and promoting overt metastasis. Importantly, our mechanistic findings led us to discover that the natural product Ginsenoside Rb1 impeded the activation of SPP1highCD206+ pro-tumor macrophages by reducing circ-0034880 biogenesis, thereby suppressing PMN formation and inhibiting CRLM. CONCLUSIONS: Circ-0034880-enriched TEVs facilitate strong interaction between primary tumor cells and SPP1highCD206+ pro-tumor macrophages, promoting PMN formation and CRLM. These findings suggest the potential of using Ginsenoside Rb1 as an alternative therapeutic agent to reshape PMN formation and prevent CRLM.
Assuntos
Neoplasias Colorretais , Vesículas Extracelulares , Neoplasias Hepáticas , Osteopontina , RNA Circular , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Vesículas Extracelulares/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Animais , RNA Circular/genética , Osteopontina/metabolismo , Osteopontina/genética , Linhagem Celular Tumoral , Microambiente Tumoral , Masculino , Feminino , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacosRESUMO
Retinoblastoma (RB) is the most common intraocular malignant tumor in children, primarily attributed to the bi-allelic loss of the RB1 gene in the developing retina. Despite significant progress in understanding the basic pathogenesis of RB, comprehensively unravelling the intricate network of genetics and epigenetics underlying RB tumorigenesis remains a major challenge. Conventional clinical treatment options are limited, and despite the continuous identification of genetic loci associated with cancer pathogenesis, the development of targeted therapies lags behind. This review focuses on the reported genomic and epigenomic alterations in retinoblastoma, summarizing potential therapeutic targets for RB and providing insights for research into targeted therapies.
RESUMO
While loss of function (LOF) of retinoblastoma 1 (RB1) tumor suppressor is known to drive initiation of small-cell lung cancer and retinoblastoma, RB1 mutation is rarely observed in breast cancers at their initiation. In this study, we investigated the impact on untransformed mammary epithelial cells given by RB1 LOF. Depletion of RB1 in anon-tumorigenic MCF10A cells induced reversible growth arrest (quiescence) featured by downregulation of multiple cyclins and MYC, upregulation of p27KIP1, and lack of expression of markers which indicate cellular senescence or epithelial-mesenchymal transition (EMT). We observed a similar phenomenon in human mammary epithelial cells (HMEC) as well. Additionally, we found that RB1 depletion attenuated the activity of RAS and the downstream MAPK pathway in an RBL2/p130-dependent manner. The expression of farnesyltransferase ß, which is essential for RAS maturation, was found to be downregulated following RB1 depletion also in an RBL2/p130-dependent manner. These findings unveiled an unexpected mechanism whereby normal mammary epithelial cells resist to tumor initiation upon RB1 LOF.
Assuntos
Regulação para Baixo , Células Epiteliais , Proteínas de Ligação a Retinoblastoma , Transdução de Sinais , Proteínas ras , Humanos , Células Epiteliais/metabolismo , Feminino , Proteínas de Ligação a Retinoblastoma/metabolismo , Proteínas de Ligação a Retinoblastoma/genética , Proteínas ras/metabolismo , Proteínas ras/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal/genética , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Glândulas Mamárias Humanas/citologia , Linhagem Celular Tumoral , Proteína do Retinoblastoma/metabolismo , Proteína do Retinoblastoma/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genéticaRESUMO
BACKGROUND: The diagnosis of treatment-related neuroendocrine prostate cancer (t-NEPC) often involves a pathological assessment and immunohistochemistry (IHC) for neuroendocrine markers. Genomic alterations in RB1 and TP53 are frequently observed in NEPC and are believed to play a crucial role in the transformation of adenocarcinoma to NEPC. In this study, we examined the clinicopathologic, immunohistochemical, and genetic features of patients with t-NEPC to better understand their prognosis and diagnostic utility. METHODS: This retrospective study reviewed the records of patients diagnosed with t-NEPC at Kobe University Hospital between October 2018 and December 2022. Clinical data, including age, serum neuroendocrine marker levels, and treatment history, were collected. IHC was performed for conventional neuroendocrine markers (synaptophysin, chromogranin A, and CD56) and RB1 and p53 expression. Next-generation sequencing (NGS) was conducted using FoundationOne® CDx to identify mutations in RB1 and TP53. RESULTS: This study included 20 patients with t-NEPC. The median time from ADT initiation to development was 42.8 months. IHC revealed RB1 loss in 75% of cases and p53 abnormalities in 75% of cases. NGS identified RB1 mutations in 55% and TP53 mutations in 75% of cases. The concordance between NGS and IHC results was high, with 70% (14/20) agreement for RB1/RB1 and 80% (16/20) for p53/TP53. The immunostaining and genomic analysis of RB1/RB1 and p53/TP53 showed abnormal findings for the four negative cases for conventional neuroendocrine markers. CONCLUSIONS: This study indicated high concordance between IHC and NGS findings for RB1/RB1 and p53/TP53 in t-NEPC. We provide a comprehensive benchmark of NGS performance compared with IHC, and these findings may help increase the diagnostic sensitivity of t-NEPC.
RESUMO
The conventional classification of mature B cells overlooks the diversity within IgD+ CD27- naïve B cells. Here, to identify distinct mature naïve B cells, we categorized CD45RBMEM55- B cells (NA RB-) and CD45RBMEM55+ B cells (NA RB+) and explore their function and localization in circulation and tissues under physiological and pathological conditions. NA RB+ B cells, found in secondary lymphoid organs, differentiate into plasmablasts and secrete IgM. In Sjögren's disease, their numbers decrease, and they show over-activation and abnormal migration, suggesting an adaptive disease response. NA RB+ B cells also appear in inflamed salivary glands, indicating involvement in local immune responses. These findings highlight the distinct roles of NA RB+ B cells in health and Sjögren's disease.
RESUMO
Senescence is an irreversible withdrawal from cell proliferation that can be initiated after DNA damage-induced cell cycle arrest in G2 phase to prevent genomic instability. Senescence onset in G2 requires p53 (also known as TP53) and retinoblastoma protein (RB, also known as RB1) family tumour suppressors, but how they are regulated to convert a temporary cell cycle arrest into a permanent one remains unknown. Here, we show that a previously unrecognised balance between the cyclin-dependent kinase (CDK) inhibitor p21 and the checkpoint kinase Chk1 controls cyclin D-CDK activity during G2 arrest. In non-transformed cells, p21 activates RB in G2 by inhibiting cyclin D1 complexed with CDK2 or CDK4. The resulting G2 exit, which precedes the appearance of senescence markers, is associated with a mitotic bypass, Chk1 downregulation and reduction in the number of DNA damage foci. In p53/RB-proficient cancer cells, a compromised G2 exit correlates with sustained Chk1 activity, delayed p21 induction, untimely cyclin E1 re-expression and genome reduplication. Conversely, Chk1 depletion promotes senescence by inducing p21 binding to cyclin D1- and cyclin E1-CDK complexes and downregulating CDK6, whereas knockdown of the checkpoint kinase Chk2 enables RB phosphorylation and delays G2 exit. In conclusion, p21 and Chk2 oppose Chk1 to maintain RB activity, thus promoting the onset of senescence induced by DNA damage in G2.
Assuntos
Ciclina D1 , Proteína Supressora de Tumor p53 , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo , Fosforilação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Ginsenoside Rb1 (Rb1), an active component isolated from traditional Chinese medicine Ginseng, is beneficial to many cardiovascular diseases. However, whether it can protect against doxorubicin induced cardiotoxicity (DIC) is not clear yet. In this study, we aimed to investigate the role of Rb1 in DIC. Mice were injected with a single dose of doxorubicin (20 mg/kg) to induce acute cardiotoxicity. Rb1 was given daily gavage to mice for 7 days. Changes in cardiac function, myocardium histopathology, oxidative stress, cardiomyocyte mitochondrion morphology were studied to evaluate Rb1's function on DIC. Meanwhile, RNA-seq analysis was performed to explore the potential underline molecular mechanism involved in Rb1's function on DIC. We found that Rb1 treatment can improve survival rate and body weight in Dox treated mice group. Rb1 can attenuate Dox induced cardiac dysfunction and myocardium hypertrophy and interstitial fibrosis. The oxidative stress increase and cardiomyocyte mitochondrion injury were improved by Rb1 treatment. Mechanism study found that Rb1's beneficial role in DIC is through suppressing of autophagy and ferroptosis. This study shown that Ginsenoside Rb1 can protect against DIC by regulating autophagy and ferroptosis.