Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Neural Transm (Vienna) ; 130(3): 243-252, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800023

RESUMO

Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental polygenic disorder that affects more than 5% of children and adolescents around the world. Genetic and environmental factors play important roles in ADHD etiology, which leads to a wide range of clinical outcomes and biological phenotypes across the population. Brain maturation delays of a 4-year lag are commonly found in patients, when compared to controls of the same age. Possible differences in cellular growth rates might reflect the clinical observations in ADHD patients. However, the cellular mechanisms are still not elucidated. To test this hypothesis, we analysed the proliferation of induced pluripotent stem cells (iPSCs) and neural stem cells (NSCs) derived from male children and adolescents diagnosed with ADHD and with genetic predisposition to it (assessed using polygenic risk scores), as well as their respective matched controls. In the current pilot study, it was noticeable that NSCs from the ADHD group proliferate less than controls, while no differences were seen at the iPSC developmental stage. Our results from two distinct proliferation methods indicate that the functional and structural delays found in patients might be associated with these in vitro phenotypic differences, but start at a distinct neurodevelopmental stage. These findings are the first ones in the field of disease modelling of ADHD and might be crucial to better understand the pathophysiology of this disorder.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Criança , Adolescente , Humanos , Masculino , Transtorno do Deficit de Atenção com Hiperatividade/genética , Projetos Piloto , Predisposição Genética para Doença
2.
Cells ; 9(2)2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033136

RESUMO

Curcumin, a major active component of turmeric (Curcuma longa, L.), is known to have various effects on both healthy and cancerous tissues. In vitro studies suggest that curcumin inhibits cancer cell growth by activating apoptosis, but the mechanism underlying the anticancer effect of curcumin is still unclear. Since there is a recent consensus about endoplasmic reticulum (ER) stress being involved in the cytotoxicity of natural compounds, we have investigated using Image flow cytometry the mechanistic aspects of curcumin's destabilization of the ER, but also the status of the lysosomal compartment. Curcumin induces ER stress, thereby causing an unfolded protein response and calcium release, which destabilizes the mitochondrial compartment and induce apoptosis. These events are also associated with secondary lysosomal membrane permeabilization that occurs later together with an activation of caspase-8, mediated by cathepsins and calpains that ended in the disruption of mitochondrial homeostasis. These two pathways of different intensities and momentum converge towards an amplification of cell death. In the present study, curcumin-induced autophagy failed to rescue all cells that underwent type II cell death following initial autophagic processes. However, a small number of cells were rescued (successful autophagy) to give rise to a novel proliferation phase.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Curcumina/farmacologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Frações Subcelulares/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
3.
Toxicol In Vitro ; 29(7): 1916-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26239606

RESUMO

Testing hepatotoxicity is a crucial step in the development and toxicological assessment of drugs and chemicals. Bio-activation can lead to the formation of metabolites which may present toxicity for the organism. Classical cytotoxic tests are not always appropriate and are often insufficient, particularly when non metabolically-competent cells are used as the model system, leading to false-positive or false-negative results. We tested over 24 h the effects of eight reference compounds on two different cell models: primary cultures of rat hepatocytes and FAO hepatoma cells that lack metabolic properties. We performed inter-assay validation between three classical cytotoxicity assays and real-time cell impedance data. We then complemented these experiments with high-content screening (HCS) to determine the cell function disorders responsible for the observed effects. Among the different assays used, the neutral red test seemed to be well suited to our two cell models, coupled with real-time cellular impedance which proved useful in the detection of bio-activation. Indeed, impedance monitoring showed a high sensitivity with interesting curve profiles yet seemed unsuitable for evaluation of viability on primary culture. Finally, HCS in the evaluation of hepatotoxicity is likely to become an essential tool for use in parallel to a classical cytotoxic assay in the assessment of drugs and environmental chemicals.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatócitos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Acetaminofen/toxicidade , Amodiaquina/toxicidade , Animais , Carbamazepina/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular , Células Cultivadas , Dietilestilbestrol/toxicidade , Eritromicina/toxicidade , Furosemida/toxicidade , Hepatócitos/metabolismo , Masculino , Vermelho Neutro/metabolismo , Ratos , Testes de Toxicidade , Tretinoína/toxicidade
4.
Toxicol In Vitro ; 28(8): 1507-20, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24997295

RESUMO

Pesticides as well as many other environmental pollutants are considered as risk factors for the initiation and the progression of cancer. In order to evaluate the in vitro effects of chemicals present in the diet, we began by combining viability, real-time cellular impedance and high throughput screening data to identify a concentration "zone of interest" for the six xenobiotics selected: endosulfan, dioxin, carbaryl, carbendazim, p'p'DDE and hydroquinone. We identified a single concentration of each pollutant allowing a modulation of the impedance in the absence of vital changes (nuclear integrity, mitochondrial membrane potential, cell death). Based on the number of observed modulations known to be involved in hepatic homeostasis dysfunction that may lead to cancer progression such as cell cycle and apoptosis regulators, EMT biomarkers and signal transduction pathways, we then ranked the pollutants in terms of their toxicity. Endosulfan, was able to strongly modulate all the studied cellular processes in HepG2 cells, followed by dioxin, then carbendazim. While p,p'DDE, carbaryl and hydroquinone seemed to affect fewer functions, their effects nevertheless warrant close scrutiny. Our in vitro data indicate that these xenobiotics may contribute to the evolution and worsening of hepatocarcinoma, whether via the induction of the EMT process and/or via the deregulation of liver key processes such as cell cycle and resistance to apoptosis.


Assuntos
Carcinoma Hepatocelular/induzido quimicamente , Poluentes Ambientais/toxicidade , Ensaios de Triagem em Larga Escala , Neoplasias Hepáticas/induzido quimicamente , Biomarcadores , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Impedância Elétrica , Transição Epitelial-Mesenquimal , Células Hep G2 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA