Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 119686, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043318

RESUMO

Soil respiration (Rs) is a crucial ecological process of carbon (C) cycling in the terrestrial ecosystems, and soil erosion has a significant impact on its C budget and balance. However, the variations of Rs rate and their CO2 efflux induced by erosion are currently poorly understood. To this end, four landscape positions (top, up, middle and toe) with different erosional and depositional characteristics were selected on a typical eroded slope in southern China to conduct field experiments, aiming to explore the effects of erosion and deposition on Rs among various sites. From March 2021 to February 2022, the in-situ Rs were measured using an automated soil respiration system, together with soil temperature at 5 cm depth (Ts5) and water content at 10 cm depth (SWC10). We initially constructed various Rs models across a one-year period, based on its relationships with Ts5 and SWC10. Subsequently, the seasonal changes of Rs at different erosional sites were simulated by the optimum models, and their annual CO2 fluxes were further estimated. The results showed that Rs rates at all sites displayed a bimodal seasonal pattern, with the highest values in May and August. And the measured Rs of the eroding and depositional sites were 0.05-7.71 and 1.47-13.03 µmol m-2 s-1, respectively. Also, remarkably higher Ts5 and SWC10 were observed in depositional sites versus the eroding sites (P < 0.05). Additionally, Rs rates at all sites were positively correlated with SOC and Ts5, but negatively correlated with SWC10. Herein, Rs models to single- and double-variable were established at different positions, and we found that the fitted R2 and AIC differed on various sites, primarily in erosional and depositional sites. Furthermore, through the best-fitting models (higher R2 and lowest AIC) we screened, the average Rs values of 3.03 and 4.46 µmol m-2 s-1 were quantitatively estimated for the eroding and depositional sites, respectively. Finally, it could be further assessed that the mean annual soil CO2-C efflux of eroded site (1104.14 g m-2) was significantly lower than that of depositional site (1629.46 g m-2). These findings highlighted the effect of erosion and deposition on Rs, which will facilitate a better understanding of C cycling in terrestrial ecosystems.


Assuntos
Dióxido de Carbono , Solo , Dióxido de Carbono/análise , Ecossistema , Taxa Respiratória , China , Temperatura
2.
Environ Monit Assess ; 196(4): 360, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472494

RESUMO

As a crucial ecological protection area in China, the Southern hilly red soil region is characterized by uneven spatial and temporal distribution of ecological landscape elements, unpredictable and changeable interrelationships between them, diversified driving factors, and lack of comprehensive consideration of ecosystem services. In order to better understand the interaction between ecosystem services, restore regional ecology, and promote sustainable development, the evolution law and influencing mechanism of ecosystem services and their driving factors are quantitatively analyzed in the study. Based on simulations of different ecosystem services from 2000 to 2020, their spatial and temporal changes and the contributions of main drivers are quantified, their trade-offs and synergies are analyzed, and the changing rules under the influence of natural factors and socioeconomic factors are explored. The results show that (1) the crop production significantly increases in the southwest and north regions, the habitat quality decreases in urban and coastal areas, and the soil retention and water yield show an increasing trend from west to east. (2) Land use/cover is the main driver of carbon storage and habitat quality variation, and precipitation is an important driver of water yield spatial variation. (3) The crop production and the other four ecosystem services show a trade-offs relationship, and the relationship between supporting services and regulating services is the synergetic. (4) The altitude weakens the synergistic relationship between soil retention and habitat quality/carbon storage, while it enhances the synergistic relationship between soil retention and water yield. Driven by precipitation factors, ecosystem services related to water yield have significant differences in the change. The population density enhances the trade-offs of crop production and soil retention, as well as the synergistic relationship between soil retention and habitat quality/carbon storage. In different land use/cover (LULC), the influence of urban land on ecosystem services relationship change is more obvious. Overall, this study can provide scientific bases and policy suggestions for ecosystem protection/restoration in the red soil region of Southern China, which has an important theoretical and practical significance.


Assuntos
Ecossistema , Solo , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , China , Carbono , Água
3.
Environ Sci Technol ; 57(20): 7733-7742, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37166064

RESUMO

Denitrification is an essential step of the nitrogen cycle in soil. However, although sunlight is an important environmental factor for soil, the investigation of the influence of sunlight on soil denitrification is limited to plant photosynthesis-mediated processes. Herein, a new pathway, denoted as a biophotoelectrochemical process, which is induced by the direct photoexcitation of soil, was found to greatly enhance soil denitrification. Using red soil as the research object, the soil with irradiation showed nitrate reduction that was 2.6-4.7 times faster than that without irradiation. The irradiation of soil accelerated the reduction of nitrite and enhanced the conversion of nitrous oxide to nitrogen, indicating that more electron sources were generated. This resulted from the photoinduced generation of ferrous substrates and photoelectrons. The contribution of irradiation to soil denitrification was almost half (45.4%), of which 30.9% was from photoinduced ferrous substrates and 14.5% was from photoelectrons. Moreover, a designed biophotoelectrochemical cell provided solid evidence for direct photoelectron transfer from soil photosensitive substrates to microorganisms. Irradiation promoted the enrichment of Alicyclobacillus, which participates in iron oxidation and electroautotrophy. This finding reveals a role of sunlight in soil denitrification that has been thus seriously overlooked and provides solid evidence for the natural occurrence of photoelectrotrophic effects.


Assuntos
Desnitrificação , Solo , Luz Solar , Nitratos/análise , Nitratos/metabolismo , Nitritos/metabolismo , Nitrogênio/análise , Óxido Nitroso/análise , Solo/química
4.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834114

RESUMO

The interaction between soil microbes and plants has a significant effect on soil microbial structure and function, as well as plant adaptability. However, the effect of soil micro-organisms on ecological adaption and rapid growth of woody bamboos remains unclear. Here, 16S rRNA and ITS rRNA genes of rhizosphere micro-organisms were sequenced, and the soil properties of three different types of Dendrocalamus sinicus were determined at the dormancy and germination stages of rhizome buds. The result showed that each type of D. sinicus preferred to absorb ammonia nitrogen (NH4+-N) rather than nitrate nitrogen (NO3--N) and required more NH4+-N at germination or rapid growth period than during the dormancy period. In total, nitrogen fixation capacity of soil bacteria in the straight type was significantly higher than that in the introduced straight type, while the ureolysis capacity had an opposite trend. Saprophytic fungi were the dominant fungal functional taxa in habitat soils of both straight and introduced straight type. Our findings are of great significance in understanding how soil microbes affect growth and adaptation of woody bamboos, but also for soil management of bamboo forests in red soil.


Assuntos
Rizosfera , Solo , Solo/química , Nitrogênio , RNA Ribossômico 16S/genética , Bactérias/genética , Plantas/genética , Microbiologia do Solo
5.
BMC Microbiol ; 22(1): 38, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109809

RESUMO

BACKGROUND: Soil microbes exist throughout the soil profile and those inhabiting topsoil (0-20 cm) are believed to play a key role in nutrients cycling. However, the majority of the soil microbiology studies have exclusively focused on the distribution of soil microbial communities in the topsoil, and it remains poorly understood through the subsurface soil profile (i.e., 20-40 and 40-60 cm). Here, we examined how the bacterial community composition and functional diversity changes under intensive fertilization across vertical soil profiles [(0-20 cm (RS1), 20-40 cm (RS2), and 40-60 cm (RS3)] in the red soil of pomelo orchard, Pinghe County, Fujian, China. RESULTS: Bacterial community composition was determined by 16S rRNA gene sequencing and interlinked with edaphic factors, including soil pH, available phosphorous (AP), available nitrogen (AN), and available potassium (AK) to investigate the key edaphic factors that shape the soil bacterial community along with different soil profiles. The most dominant bacterial taxa were Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Crenarchaeota, and Bacteriodetes. Bacterial richness and diversity was highest in RS1 and declined with increasing soil depth. The distinct distribution patterns of the bacterial community were found across the different soil profiles. Besides, soil pH exhibited a strong influence (pH ˃AP ˃AN) on the bacterial communities under all soil depths. The relative abundance of Proteobacteria, Actinobacteria, Crenarchaeota, and Firmicutes was negatively correlated with soil pH, while Acidobacteria, Chloroflexi, Bacteriodetes, Planctomycetes, and Gemmatimonadetes were positively correlated with soil pH. Co-occurrence network analysis revealed that network topological features were weakened with increasing soil depth, indicating a more stable bacterial community in the RS1. Bacterial functions were estimated using FAPROTAX and the relative abundance of functional bacterial community related to metabolic processes, including C-cycle, N-cycle, and energy production was significantly higher in RS1 compared to RS2 and RS3, and soil pH had a significant effect on these functional microbes. CONCLUSIONS: This study provided the valuable findings regarding the structure and functions of bacterial communities in red soil of pomelo orchards, and highlighted the importance of soil depth and pH in shaping the soil bacterial population, their spatial distribution and ecological functioning. These results suggest the alleviation of soil acidification by adopting integrated management practices to preserve the soil microbial communities for better ecological functioning.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Citrus , Microbiota/fisiologia , Microbiologia do Solo , Solo/química , Bactérias/classificação , China , Concentração de Íons de Hidrogênio , Microbiota/genética , Nitrogênio/metabolismo , RNA Ribossômico 16S/genética
6.
J Sci Food Agric ; 102(2): 740-749, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34173233

RESUMO

BACKGROUND: The pH adjustment of acidic red soils with lime materials is beneficial for the reduction of phosphorus (P) fixation. However, the reasons for varying levels of P activation after adding different lime materials have not been fully investigated. Therefore, this study examined changes in soil labile P and P forms after phosphate application to calcium carbonate (CaCO3 ) and dolomite amended red soil during a 120-day incubation period. Also change of P sorption properties in the amended soil samples from day 120 were examined through a sorption-desorption experiment. RESULTS: The increase of soil H2 O-P and NaHCO3 -P in the CaCO3 and dolomite amended soil treatments was mainly ascribed to the decline of the NaOH-P. However, when compared with the control treatment after 120 days, soil Olsen-P significantly increased by 34% and 66% in the CaCO3 and dolomite treatments. The Hedley P fractionation results demonstrated that the CaCO3 application caused a notable increase of HCl-P (stable Ca-P), which was 88.4% higher than that in the dolomite treatment. However, the formation of stable P was strongly suppressed in the dolomite treatment due to the presence of magnesium (Mg), which was identified by the negative relationship between M3-Mg and HCl-P. In line with these findings, P sorption-desorption work showed weaker P binding energy in the dolomite treatment relative to the CaCO3 treatment. CONCLUSION: In terms of increasing P availability in red soil, this study suggests that dolomite should be used to substitute CaCO3 in order to reduce the soil P fixation. © 2021 Society of Chemical Industry.


Assuntos
Carbonato de Cálcio/química , Magnésio/química , Fósforo/química , Solo/química , Adsorção , Compostos de Cálcio/química , Fertilizantes/análise , Concentração de Íons de Hidrogênio , Óxidos/química , Fosfatos/química
7.
Arch Microbiol ; 203(5): 1971-1980, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33394081

RESUMO

To explore the genetic diversity and distribution of rhizobia in the rhizosphere of soybean grown in red soil, we have collected 21 soil samples from soybean fields across seven counties in Hunan province, China. MiSeq sequencing of rpoB gene was used to determine the intra-species diversity of rhizobia existing in soybean rhizospheres. Soil chemical properties were determined by routine methods. The Principal Coordinates Analysis (PCoA) plot indicated a clear biogeographical pattern characterizing the soybean rhizosphere across different sites. The Mantel test demonstrated that biogeographical pattern was significantly correlated with the geographical distance (Mantel statistic R 0.385, p < 0.001). There were obvious differences in the rhizobial communities among northeastern eco-region, southeastern eco-region and western eco-region. In general, Bradyrhizobium diazoefficiens was the most abundant rhizobial species in the soybean rhizosphere. At an intermediate (10-400 km) spatial scale, the biogeographical pattern of rhizobial communities in soybean rhizosphere is associated with both soil properties and geographical distance. Redundancy analysis (RDA) showed that total potassium (TK), available potassium (AK), soil organic carbon (SOC), and available nitrogen (AN) were the main factors that influenced the α-diversity of rhizobial communities. Canonical correspondence analysis (CCA) showed that pH and exchangeable Ca and Mg had the greatest influence on the ß-diversity of the rhizobial communities in the soybean rhizosphere. These findings characterize the distribution pattern and its influencing factors of soybean rhizobia in rhizosphere in Hunan province, which may be helpful in selecting suitable strains or species as inoculants for soybeans in red soil regions.


Assuntos
Glycine max/microbiologia , Microbiota/genética , Rizosfera , Microbiologia do Solo , Bradyrhizobium/classificação , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , China , RNA Polimerases Dirigidas por DNA/genética , Variação Genética , Solo/química
8.
J Environ Manage ; 296: 113252, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34261035

RESUMO

The study uses an emerging soil treatment technology, the Multi-Soil Layering System (MSL), which is composed of the zeolite permeability layers (PL) and the soil mixture block layers (SMB). The experimental results show that the SMBs with iron particle (SMB-I) removed more than 83% of the total phosphorus (P) pollution in the water, and the outflow sewage concentration is 9.6 mg/L. In contrast, the SMBs with red clay (SMB-R) has 23% removal rate, and the outflow sewage concentration is 46.45 mg/L. Only 0.013 mg/L Fe concentration was detected in the SMB-R system and release of Fe from red soil is hardly achieved under neutral water environment. The SMB-R and SMB-I systems reduced 108.89 mg/g and 20.93 mg/g respectively and the SMB-R had higher removal efficiency of P per gram released Fe. The chromaticity problem of the effluent water in the SMB-I is up to 225 platinum cobalt, and that of the SMB-R is 172 platinum cobalt. Adding 10 g oyster shell (slice-only) and/or 0.65 g polyglutamic acid have effectively removed up to 99% 25-mg/L Fe in the effluent water; the chromaticity problem caused by Fe effluent was successfully solved. Furthermore, the iron particle has the highest unit cost among the materials in the SMBs (US$1.47/kg in lab and US$0.12/kg in field). Removal of 1 mg/L TP in the MSL system costs US$0.036 (by lab) in terms of removal TP rate in the laboratory was 83% and is economically feasible in field development.


Assuntos
Fósforo , Águas Residuárias , Argila , Esgotos , Solo
9.
J Environ Manage ; 278(Pt 1): 111537, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33120090

RESUMO

Terracing and rainfall characteristics notably influence the water erosion processes. However, an extensive long term in situ quantitative evaluation of the approaches to control the water erosion in different orchard terraces has not yet been performed, especially considering the increasing frequency and severity of extreme rainfall events due to the global climate change. In this study, six types of orchard terraces, including slope land as the control (SLck), level terrace with bare (LTb) and vegetation taluses (LTv), outward (OTv) and inward terrace (ITv) with vegetation taluses and level terrace having front mounds and back ditches with vegetation taluses (MDLTv), were used to analyze the effects of extreme and ordinary rainfall events on the surface runoff and soil erosion. According to the measured data for twelve consecutive years, 356 natural rainfall events were divided into extreme and ordinary rainfall, based on the World Meteorological Organization standard. The results indicated that more severe surface runoff and sediment loss occurred under extreme rainfall: the runoff coefficient and soil loss under extreme rainfall were 2.6 and 11.5 times those under ordinary rainfall, respectively. The sediment yield (contribution rate, 42.9%) exhibited a higher sensitivity to extreme rainfall events compared to that of the surface runoff generation (contribution rate, 16.4%). Moreover, the reduction in the surface runoff and sediment in the extreme rainfall case differed for different orchard terraces. The average surface runoff coefficient and soil loss amount decreased in the following order: SLck>LTb>OTv>LTv>ITv>MDLTv. Nevertheless, the highest and lowest contributions of the extreme rainfall to the sediment yield occurred in the LTb (64.8%) and MDLTv (21.7%) plots, respectively. Therefore, severe talus erosion caused by extreme rainfall should be monitored, and a combination of vegetation taluses and front mounds and back ditches on the platforms is recommended as a sustainable strategy to prevent extreme water erosion when transforming slope land into orchard terraces.


Assuntos
Chuva , Movimentos da Água , China , Conservação dos Recursos Naturais , Monitoramento Ambiental , Sedimentos Geológicos , Solo , Água , Pesos e Medidas
10.
Environ Monit Assess ; 193(5): 304, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33900476

RESUMO

Soil acidification has always been a substantial eco-environmental problem restricting agricultural development in the red soil region of southern China. It is necessary to determine the dynamic change in soil pH in this area to formulate regional agricultural and environmental management measures. Yujiang County, a typical county with red soil acidification in southern China, was selected as the study area. Based on soil data from 1982, 2007, and 2018, the spatiotemporal variation characteristics and the latest changes in soil pH in the county were analyzed. The results show that the soil pH in Yujiang County decreased from 5.66 to 4.74 and then increased to 4.96 from 1982 to 2018, showing a trend of first decreasing and then increasing. According to the spatial distribution characteristics of soil pH, the low soil pH values in the three periods were mainly distributed in the northern mountainous areas with more forestland and dry land area and some southern hilly areas, while the paddy soil pH values in the middle low hilly areas were relatively higher. The soil pH decreased rapidly from 1982 to 2007, showing a large area of acidification. In 2007, the proportions of acidic (4.5 < pH < 5.5) and strongly acidic (pH < 4.5) soils increased by 67.37% and 10.6%, respectively, compared with that in 1982. However, from 2007 to 2018, the soil pH of the whole county increased, and the acidification trend was alleviated, which is of great significance to the regional red soil ecological environment. Through the analysis of the main factors affecting the change in soil pH, it was found that the sharp decline in soil pH in Yujiang County during 1982-2007 was mainly caused by acid rain and excessive nitrogen application. From 2007 to 2018, no significant reduction in nitrogen fertilizer in this area occurred, and although the increase in soil organic matter contributed to alleviating soil acidification, the analysis showed that the decrease in acid rain was the main reason for the rise in soil pH in Yujiang County. At the same time, notably, there is a large area of soil in the area that is still acidic, and effective control of soil acidification is still an important ecological and environmental issue in this area. In order to further improve the pH value of soil in red soil region, it is suggested that on the basis of continuous improvement of acid rain, in addition to increasing soil organic matter by returning straw to field and other measures, appropriate amount of lime or alkaline biochar can be applied to better improve the soil ecological environment in red soil hilly region.


Assuntos
Monitoramento Ambiental , Solo , China , Fertilizantes , Concentração de Íons de Hidrogênio
11.
Int J Syst Evol Microbiol ; 70(2): 1015-1025, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31730027

RESUMO

A novel filamentous, spore-forming, Gram-stain-positive bacterium, designated SCAWS-G2T, was isolated from red soil in Jiangxi Province, PR China. The strain grew at 25-45 °C and at pH 4.0-7.0, and was able to tolerate up to 50 mM Zn2+. The complete genome of strain SCAWS-G2T was a circular chromosome of ~11.34 Mb, which contained four 16S rRNA genes with three sequence types (0.4-0.8 % differences). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SCAWS-G2T formed a distinct lineage within the order Ktedonobacterales, showing <89.2 % sequence similarities to the recognized taxa of this order. The whole-genome based phylogenomic tree separated strain SCAWS-G2T from the recognized families within Ktedonobacterales. The genome-wide average nucleotide identity values between strain SCAWS-G2T and the related type strains were <68.2 %. The strain can also be differentiated from the recognized families by a number of phenotypic characteristics. The polar lipids of SCAWS-G2T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, seven unidentified glycolipids and one unidentified lipid. The peptidoglycan amino acids contained ornithine, glycine, glutamic acid and alanine, and the cell-wall sugars were mainly galactose and rhamnose. The major fatty acids were C16 : 1 2-OH, C16 : 0 and iso-C17 : 0. Based on all these data, we propose that strain SCAWS-G2T represents a novel genus and species, Ktedonosporobacter rubrisoli gen. nov., sp. nov., within the new family Ktedonosporobacteraceae fam. nov. of the order Ktedonobacterales. The type strain of Ktedonosporobacter rubrisoli is SCAWS-G2T (=CGMCC 1.16132T=DSM 105258T).


Assuntos
Chloroflexi/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , China , Chloroflexi/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Environ Monit Assess ; 192(2): 125, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31960180

RESUMO

The spatial misallocation of ecological restoration and its associated economic costs may lead to ecological restoration failure. We analyzed environmental effects of ecological restoration measures, using data from runoff plots, and estimated the ecosystem states under different types of ecological restoration measures using a catastrophe model. We then assessed the spatial misallocation of restoration between sites, where natural restoration can still be used versus those where artificial restoration should be used instead, and estimated the resulting economic costs due to this misallocation in the Zhuxi watershed in the red soil hilly region of China. Results using the catastrophe model were different from those obtained solely based on linear analyses of the runoff plots. Linear models were found to not apply well to the distribution of ecological restoration measures because Changting County reapplied for funding from 2012 to 2017 to maintain projects. There was much spatial misallocation in the studied region, with artificial restoration used at many sites where natural restoration can still be used, which resulted in economic costs of 2453.00 × 104 Chinese renminbi (RMB) from 2012 to 2017. The catastrophe model could analyze the spatial misallocation of ecological restoration and its associated economic costs, and it could reveal the catastrophic phenomena that traditional approaches could not.


Assuntos
Conservação dos Recursos Naturais/métodos , China , Conservação dos Recursos Naturais/economia , Ecologia/métodos , Ecossistema , Monitoramento Ambiental/métodos , Solo
13.
Arch Microbiol ; 201(4): 459-465, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30298376

RESUMO

A novel Marinactinospora strain JX35-4T was isolated from red soil which was collected from Wushan, northern Jiangxi Province, China. Analysis of the 16S rRNA gene sequences showed that strain JX35-4T belongs to the genus Marinactinospora and formed a distinct phylogenetic clade with Marinactinospora thermotolerans SCSIO 00652T and Marinactinospora endophytica YIM 690053T with sequence similarity of 96.97% and 96.42%, respectively. The strain was Gram-positive and formed branched substrate hyphae with no fragmentation, and abundant aerial hyphae that differentiated into long spore chains, and short rod-shaped spores. Growth occurred at 20-45 °C, pH 7.0-12.0 and in the presence of 0-7.5% (w/v) NaCl. The genomic DNA G + C content was determined to be 68.3 mol%. The cell wall of strain JX35-4T contained meso-diaminopimelic acid and xylose. Polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol mannosides and one unidentified phospholipid. The major fatty acids of strain JX35-4T consisted of anteiso-C17:0 and iso-C16:0. Major menaquinones were MK-9(H10), MK-12 and MK-10(H2). Based on the polyphasic data, strain JX35-4T (= CGMCC 4.7382T = DSM 104977T) is concluded to represent a novel species of the genus Marinactinospora, for which the name Marinactinospora rubrisoli sp. nov. is proposed.


Assuntos
Actinomycetales/classificação , Microbiologia do Solo , Actinomycetales/química , Actinomycetales/genética , Actinomycetales/isolamento & purificação , Composição de Bases , DNA Bacteriano/química , Ácido Diaminopimélico/análise , Ácidos Graxos/análise , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio/análise , Solo
14.
Ecotoxicol Environ Saf ; 161: 290-295, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29890430

RESUMO

Biochar has a significant effect on alleviating acid soil aluminum (Al) toxicity and promoting plant growth. The potential effects of aged biochar (long-term applied biochar in soil) on soil amendment have attracted increasing attention. Here, the effects of biochar and aged biochar were evaluated through a pot experiment. The seedlings of cabbage were grown in red soil for 45 days with the following four biochar treatments: CK (0% biochar), PB (2% primary biochar), WB (2% water washed biochar) and AB (2% acidulated biochar) to investigate the potential effect of biochar and aged biochar on mitigating red soil aluminum toxicity and improving cabbage growth. Results indicated that biochar increased the content of available potassium, available phosphorus, and organic carbon in red soil and improved cabbage growth. Biochar not only increased the pH of red soil by 0.42 units, but also reduced exchangeable acid and exchangeable hydrogen (H+) content by 52.74% and 2.86% respectively compared with CK. Additionally, the amount of the total active aluminum and exchangeable Al3+ were reduced by 26.74% and 66.09%, respectively. However, water washed biochar and acidulated biochar decreased the effect of relieving the acidity substantially as compared to the primary biochar. Moreover, acidulated biochar treatment increased the Al3+ content by 8.07% and trend of increasing soil available nutrients was declined with aged biochar. Taken together, it is concluded that biochar can reduce aluminum toxicity by increasing pH of acid soil and available nutrients, thus improves cabbage growth. However, aged biochar had a negative effect on aluminum toxicity reduction and acidic soil improvement, thus inhibited plant growth.


Assuntos
Alumínio/análise , Brassica/crescimento & desenvolvimento , Carvão Vegetal/química , Poluentes do Solo/análise , Solo/química , Concentração de Íons de Hidrogênio , Fósforo/análise
15.
Environ Monit Assess ; 190(10): 590, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30218210

RESUMO

In recent decades, disposal of hazardous material has become a challenging task especially in case of landfills where leaching out of waste is possible. In such cases, an efficient and economical liner system using locally available material is very essential. In this paper, an attempt has been made to study the suitability of red soil stabilized using lime and Prosopis juliflora fibers as liner material for landfills. Prosopis is a woody weed available abundantly in tropical and subtropical regions of the world. The fibers were used at 0.0%, 0.25%, 0.50%, 0.75%, and 1.0% by weight of the soil and the amount of lime used was kept constant as 4%. Tests results revealed decrease in plasticity index, increase in UCC strength, ductile behavior, decrease in consolidation settlement, reduction in permeability and shrinkage, and increase in CBR resistance in soils treated with both lime and Prosopis fibers. SEM images of stabilized soil revealed adherence of hydrated products of lime on the fiber surface, which facilitate efficient stress transfer between the soil and fibers. A single composite liner system was modeled using Visual MODFLOW by replacing the compacted clay layer with the stabilized red soil below the HDPE liner and the model was simulated. The simulation result showed that the performance of liner system with stabilized red soil is good and could prevent the aquifer from contamination. From the study, it can be concluded that stabilized red soil possesses the geotechnical properties required for an efficient liner system.


Assuntos
Substâncias Perigosas , Prosopis , Eliminação de Resíduos/métodos , Solo , Instalações de Eliminação de Resíduos , Poluição da Água/prevenção & controle , Silicatos de Alumínio , Compostos de Cálcio , Argila , Monitoramento Ambiental , Água Subterrânea , Óxidos , Permeabilidade , Madeira
16.
J Environ Manage ; 163: 155-62, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26320008

RESUMO

The arsenic adsorption capacity of a manganese oxide-modified biochar composite (MBC), prepared by pyrolysis of a mixture of potassium permanganate and biochar, was investigated in red soil. Adsorption experiments using batch procedures were used to estimate the arsenic adsorption capacities of the absorbent materials. Adsorption and desorption isotherms, Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were used to characterise the prepared adsorbent materials, and a plausible mechanism for arsenic removal by MBC was proposed. Arsenic in red soil-MBC mixtures exhibited lower mobility than that in soils amended with pristine biochar. The improved removal performance of soil-MBC mixtures was attributed to a lower H/C ratio, higher O/C ratio, higher surface hydrophilicity, and higher surface sorption capacity, even though the impregnation of manganese oxide decreased the specific surface area of the biochar. Arsenic retention increased as the biochar content increased, mainly owing to an increase in soil pH. Several oxygenated functional groups, especially O-H, CO, Mn-O, and Si-O, participated in the adsorption process, and manganese oxides played a significant role in the oxidation of arsenic. This study highlights the potential of MBC as an absorbent to immobilise arsenic for use in contaminated land remediation in the red soils region.


Assuntos
Arsênio/química , Carvão Vegetal , Compostos de Manganês/química , Óxidos/química , Poluentes do Solo/química , Solo/química , Adsorção , Arsênio/isolamento & purificação , Concentração de Íons de Hidrogênio , Oxirredução , Espectroscopia Fotoeletrônica , Poluentes do Solo/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Water Res ; 249: 120909, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38006788

RESUMO

Sludge hydrolysate, the byproduct generated during sludge hydrothermal treatment (HT), is a potential carbon source for biological denitrification. However, the refractory organic matters and the nutrient substances are unfavorable to the nitrogen removal. In this study, effects of HT conditions on the hydrolysate properties, and the hydrolysate compositions optimization via red soil (RS) filtration were investigated. At HT temperature of 160-220 °C and reaction time of 1-4 h, the highest dissolution rate of organics from sludge to hydrolysate achieved 70.1 %, while the acetic acid dominated volatile fatty acids (VFAs) was no more than 5.0 % of the total organic matter content. The NH4+-N and dissolved organic nitrogen (DON) were the main nitrogen species in hydrolysate. When the hydrolysate was filtered by RS, the high molecular weight organic matters, DON, NH4+ and PO43- were effectively retained by RS, while VFAs and polysaccharide favorable for denitrification were kept in the filtrate. When providing same COD as the carbon source, the filtrate group (Fi-Group) introduced lower concentrations of TN and humic substances but higher content of VFAs. This resulted in TN removal rate (57.0 %) and denitrification efficiency (93.6 %) in Fi-Group higher than those in hydrolysate group (Hy-Group), 39.4 % and 83.7 %, respectively. It is noticeable that both Hy- and Fi- Groups up-regulated most of denitrification functional genes, and increased the richness and diversity of denitrifying bacteria. Also, more denitrifying bacteria genera appeared, and their relative abundance increased significantly from 3.31 % in Control to 21.15 % in Hy- Group and 31.31 % in Fi-Group. This indicates that the filtrate is a more suitable carbon source for denitrification than hydrolysate. Moreover, the pH rose from 4.6 ± 0.14 to 6.5 ± 0.05, and the organic carbon, TN, TP and cation exchange capacity (CEC) of RS increased as well after being filtered, implying that the trapped compounds may have the potential to improve soil quality. This study provides a new insight for hydrolysate application according to its composition characteristics, and helps make the most use of wasted sludge.


Assuntos
Reatores Biológicos , Esgotos , Esgotos/química , Fermentação , Desnitrificação , Carbono , Solo , Bactérias , Ácidos Graxos Voláteis , Nitrogênio
18.
Heliyon ; 10(1): e23724, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192853

RESUMO

Red soils are characterised by acidic pH and limitations in carbon, nitrogen, water, and soil structure. To overcome such limitations, improved soil aggregation is the key to improving the physical and chemical properties of soil. Applying organic amendments such as straw can lead to corresponding soil aggregation and stability changes. Therefore, we explored the short-term effects of rice straw amendment, either alone or in combination with biochar, on improving the carbon fractions, stability, and composition of soil aggregates in red soil with a history of vegetable planting. The study consisted of four treatments: control (no organic material, CK), biochar alone (5% homemade straw biochar, B), straw alone (12% rice straw, S), and biochar with straw (5% homemade straw biochar + 12% rice straw, BS). Our results showed that equal amounts of straw and biochar substantially reduced the number of mechanically stable aggregates (MSA), mean weight diameter (MWD), and geometric mean diameter (GMD) of the soil. BS treatment reduced >0.25 mm aggregate content (R0.25), MWD and GMD by 24.06%, 56.81%, and 62.19%, respectively, compared with that of the control. The addition of straw greatly enhanced the water-stable macromolecular content and stability coefficient of the soil, but treatment B had no obvious effect. The S treatment had the greatest effect on R0.25, MWD and GMD, increasing them by 143.94%, 246.67%, and 181.82%, respectively, compared with that of the control. Soil organic carbon (SOC) was significantly increased by straw addition and carbonisation treatment, and the effect of the BS treatment was the best, with an increase of 325.63% compared with that of the control. The organic carbon content in the aggregates of different particle sizes treated with different organic materials also increased significantly. In the soil reactive organic carbon fraction, applying biochar alone did not affect microbial biomass carbon (MBC), dissolved organic carbon (DOC), or easily oxidized organic carbon (EOC) but could increase the particulate organic carbon (POC) content. All the treatments with straw application significantly increased the MBC, DOC, EOC, and POC content, and the highest effect was obtained by applying both straw and biochar in an integrated form, i.e., the BS treatment. In conclusion, the co-application of biochar and straw sequestered more carbon and revamped soil C pools than either biochar or straw alone and could be a promising option for the sustainable use of red soils to ameliorate the aforementioned limitations associated with this soil type.

19.
Sci Total Environ ; 924: 171730, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38492603

RESUMO

Eutrophication and its resulting harmful algal blooms greatly reduce the ecosystem services of natural waters. The use of modified clay materials to assist the phytoremediation of eutrophic water is a promising technique. In this study, ferric chloride and calcium hydroxide were respectively loaded on red soil for algal flocculation and phosphorus inactivation. A two-by-two factorial mesocosm experiment with and without the application of ferric- and calcium- loaded red soil (FA), and with and without planting the submerged macrophyte Vallisneria natans was conducted for the in-situ repair of eutrophic water and sediment. Furthermore, field enclosure application was carried out to verify the feasibility of the technology. At the end of the mesocosm experiment, the total phosphorus, total nitrogen, and ammonia nitrogen concentrations in water were reduced by 81.8 %, 63.3 %, and 62.0 %, respectively, and orthophosphate phosphorus concentration in the sediment-water interface decreased by 90.2 % in the FA + V. natans group compared with those in the control group. The concentration and proportion of chlorophyll-a in cyanobacteria decreased by 89.8 % and 71.2 %, respectively, in the FA + V. natans group. The content of active phosphorus in V. natans decreased and that of inert phosphorus increased in the FA + V. natans group, compared with those in the V. natans alone group, thus may reducing the risk of phosphorus release after decomposing of V. natans. The sediment bacterial diversity index did not change significantly among treatments. Field enclosure application have also been successful, with chlorophyll-a concentration in the water of treated enclosure decreased from above 200 µg/L to below 10 µg/L, and phosphorus concentration in the water decreased from >0.6 mg/L to <0.02 mg/L. These results demonstrated that the FA in combination with submerged macrophyte planting had great potential for the in-situ remediation of eutrophic water, especially those with severe algal blooms.


Assuntos
Ecossistema , Lagos , Cálcio , Solo , Eutrofização , Proliferação Nociva de Algas , Água , Clorofila , Clorofila A , Ferro , Ferro da Dieta , Fósforo , Nitrogênio/análise
20.
Chemosphere ; 358: 142192, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701862

RESUMO

Current human health risk assessments of soil arsenic (As) contamination rarely consider bioaccessibility (IVBA), which may overestimate the health risks of soil As. The IVBA of As (As-IVBA) may differ among various soil types. This investigation of As-IVBA focused As from geological origin in a typical subtropical soil, lateritic red soil, and its risk control values. The study used the SBRC gastric phase in vitro digestion method and As speciation sequential extraction based upon phosphorus speciation extraction method. Two construction land sites (CH and HD sites) in the Pearl River Delta region were surveyed. The results revealed a high content of residual As (including scorodite, mansfieldite, orpiment, realgar, and aluminum arsenite) in the lateritic red soils at both sites (CH: 84.9%, HD: 91.7%). The content of adsorbed aluminum arsenate (CH: 3.24%, HD: 0.228%), adsorbed ferrum arsenate (CH: 8.55%, HD: 5.01%), and calcium arsenate (CH: 7.33%, HD: 3.01%) were found to be low. The bioaccessible As content was significantly positively correlated with the As content in adsorbed aluminum arsenate, adsorbed ferrum arsenate, and calcium arsenate. A small portion of these sequential extractable As speciation could be absorbed by the human body (CH: 14.9%, HD: 3.16%), posing a certain health risk. Adsorbed aluminum arsenate had the highest IVBA, followed by calcium arsenate, and adsorbed ferrum arsenate had the lowest IVBA. The aforementioned speciation characteristics of As from geological origin in lateritic red soil contributed to its lower IVBA compared to other soils. The oxidation state of As did not significantly affect As-IVBA. Based on As-IVBA, the carcinogenic and non-carcinogenic risks of soil As in the CH and HD sites decreased greatly in human health risk assessment. The results suggest that As-IVBA in lateritic red soil should be considered when assessing human health risks on construction land.


Assuntos
Arsênio , Poluentes do Solo , Solo , Arsênio/análise , Arsênio/química , Humanos , Poluentes do Solo/análise , Poluentes do Solo/química , Medição de Risco , Solo/química , Monitoramento Ambiental , Disponibilidade Biológica , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA