Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(43): 16340-16347, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37856081

RESUMO

Frequent cycles of flooding and drainage in paddy soils lead to the reductive dissolution of iron (Fe) minerals and the reoxidation of Fe(II) species, all while generating a robust and consistent output of reactive oxygen species (ROS). In this study, we present a comprehensive assessment of the temporal and spatial variations in Fe species and ROS during the flooding-drainage process in a representative paddy soil. Our laboratory column experiments showed that a decrease in dissolved O2 concentration led to rapid Fe reduction below the water-soil interface, and aqueous Fe(II) was transformed into solid Fe(II) phases over an extended flooding time. As a result, the •OH production capacity of liquid phases was reduced while that of solid phases improved. The •OH production capacity of solid phases increased from 227-271 µmol kg-1 (within 1-11 cm depth) to 500-577 to 499-902 µmol kg-1 after 50 day, 3 month, and 1 year incubation, respectively. During drainage, dynamic •OH production was triggered by O2 consumption and Fe(II) oxidation. ROS-trapping film and in situ capture revealed that the soil surface was the active zone for intense H2O2 and •OH production, while limited ROS production was observed in the deeper soil layers (>5 cm) due to the limited oxygen penetration. These findings provide more insights into the complex interplay between dynamic Fe cycling and ROS production in the redox transition zones of paddy fields.


Assuntos
Oryza , Poluentes do Solo , Solo , Radical Hidroxila , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Oxirredução , Água , Compostos Ferrosos
2.
Environ Sci Technol ; 55(20): 14281-14293, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34623154

RESUMO

Iron (Fe) phases are tightly linked to the preservation rather than the loss of organic carbon (OC) in soil; however, during redox fluctuations, OC may be lost due to Fe phase-mediated abiotic processes. This study examined the role of Fe phases in driving hydroxyl radical (•OH) formation and OC transformation during redox cycles in paddy soils. Chemical probes, sequential extraction, and Mössbauer analyses showed that the active Fe species, such as exchangeable and surface-bound Fe and Fe in low-crystalline minerals (e.g., green rust-like Fe phases), predominantly regulated •OH formation during redox cycles. The •OH oxidation strongly induced the oxidative transformation of OC, which accounted for 15.1-30.8% of CO2 production during oxygenation. Microbial processes contributed 7.3-12.1% of CO2 production, as estimated by chemical quenching and γ-irradiation experiments. After five redox cycles, 30.1-71.9% of the OC associated with active Fe species was released, whereas 5.2-7.1% was stabilized by high-crystalline Fe phases due to the irreversible transformation of these active Fe species during redox cycles. Collectively, our findings might unveil the under-appreciated role of active Fe phases in driving more loss than conservation of OC in soil redox fluctuation events.


Assuntos
Poluentes do Solo , Solo , Carbono , Ferro , Oxirredução , Poluentes do Solo/análise
3.
Chemosphere ; 362: 142709, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936491

RESUMO

V-Ti magnetite tailings (VTMTs) contain various heavy metals, such as Fe, Mn, V, Co, and Ni. The groundwater pollution caused by the tailing metal release has become a local environmental concern. Although studies have demonstrated the influence of alternate flooding and drying cycles (FDCs) on metal form and mobility in minerals, little was known about whether FDCs affect the metal release of VTMTs and the transformation of released metals. This study investigated the metal release kinetics of VTMTs and the metal transformation under FDCs in the absence and presence of acid rain (sulfuric and nitric acids) and bio-secreted organic acids (acetic, oxalic, and citric acids). The results showed that FDCs promoted metal release whether or not acids were present. The maximum released concentrations of V, Mn, Fe, Co, and Ni were as high as 78.63 mg L-1,1.47 mg L-1, 67.96 µg L-1, 1.34 mg L-1, and 0.80 mg L-1, respectively, under FDCs and citric acids. FDCs enhanced the tailing metal release by increasing the metal labile fraction proportion. However, the concentrations of released Fe, Mn, V, Co, and Ni all gradually decreased due to their (co-)precipitation. These precipitates conversely inhibited the subsequent mineral dissolution by covering the tailing surface. FDCs also enhanced the tailings' porosities by 2.94%-9.94%. The mineral dissolution, expansion and shrinkage, and changes in tension destroyed the tailing microstructure during FDCs. This study demonstrated the low metal pollution risk of VTMTs under FDCs, either in acid rain or bio-secreted organic acids. However, the increase in tailing porosity should be seriously considered as it would affect the tailing pond safety.


Assuntos
Metais Pesados , Metais Pesados/análise , Óxido Ferroso-Férrico/química , Poluentes Químicos da Água/análise , Inundações , Água Subterrânea/química , Mineração , Dessecação , Chuva Ácida , Cinética
4.
Chemosphere ; 352: 141364, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336034

RESUMO

Diverse paths generated by reactive oxygen species (ROS) can mediate contaminant transformation and fate in the soil/aquatic environments. However, the pathways for ROS production upon the oxygenation of redox-active ferrous iron minerals are underappreciated. Ferrihydrite (Fh) can be reduced to produce Fe(II) by Shewanella oneidensis MR-1, a representative strain of dissimilatory iron-reducing bacteria (DIRB). The microbial reaction formed a spent Fh product named mr-Fh that contained Fe(II). Material properties of mr-Fh were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Magnetite could be observed in all mr-Fh samples produced over 1-day incubation, which might greatly favor the Fe(II) oxygenation process to produce hydroxyl radical (•OH). The maximum amount of dissolved Fe(II) can reach 1.1 mM derived from added 1 g/L Fh together with glucose as a carbon source, much higher than the 0.5 mM generated in the case of the Luria-Bertani carbon source. This may confirm that MR-1 can effectively reduce Fh and produce biogenetic Fe(II). Furthermore, the oxygenation of Fe(II) on the mr-Fh surface can produce abundant ROS, wherein the maximum cumulative •OH content is raised to about 120 µM within 48 h at pH 5, but it is decreased to about 100 µM at pH 7 for the case of MR-1/Fh system after a 7-day incubation. Thus, MR-1-mediated Fh reduction is a critical link to enhance ROS production, and the •OH species is among them the predominant form. XPS analysis proves that a conservable amount of Fe(II) species is subject to adsorption onto mr-Fh. Here, MR-1-mediated ROS production is highly dependent on the redox activity of the form Fe(II), which should be the counterpart presented as the adsorbed Fe(II) on surfaces. Hence, our study provides new insights into understanding the mechanisms that can significantly govern ROS generation in the redox-oscillation environment.


Assuntos
Compostos Férricos , Shewanella , Espécies Reativas de Oxigênio/metabolismo , Compostos Férricos/química , Minerais/química , Ferro/química , Oxirredução , Shewanella/metabolismo , Óxido Ferroso-Férrico/metabolismo , Carbono/metabolismo
5.
Water Res ; 245: 120589, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708773

RESUMO

Elemental sulfur (S0) plays a vital role in the coupled cycling of sulfur and iron, which in turn affects the transformation of carbon and various pollutants. These processes have been well characterized under static anoxic or oxic conditions, however, how the natural redox fluctuations affect the bio-mediated sulfur cycling and coupled iron cycling remain enigmatic. The present work examined S0 disproportionation as driven by natural microbial communities under fluctuating redox conditions and the contribution of S0 disproportionation to ferrihydrite transformation. Samples were incubated at either neutral or alkaline pH values, applying sequential anaerobic, aerobic and anaerobic conditions over 60 days. Under anaerobic conditions, S0 was found to undergo disproportionation to sulfate and sulfide, which subsequently reduced ferrihydrite at both pH 7.4 and 9.5. Ferrihydrite promoted S0 disproportionation by scavenging biogenic sulfide and maintaining a suitable degree of sulfate formation. After an oxic period, during the subsequent anoxic incubation, bioreduction of sulfate occurred and the biogenic sulfide reduced iron (hydr)oxides at a rate approximately 25 % lower than that observed during the former anoxic period. A 16S rDNA-based microbial community analysis revealed changes in the microbial community in response to the redox fluctuations, implying an intimate association with the coupled cycling of sulfur and iron. Microscopic and spectroscopic analyses confirmed the S0-mediated transformation of ferrihydrite to crystalline iron (hydr)oxide minerals such as lepidocrocite and magnetite and the formation of iron sulfides precipitated under fluctuating redox conditions. Finally, a reaction mechanism based on mass balance was proposed, demonstrating that bio-mediated sulfur transformation maintained a sustainable redox reaction with iron (hydr)oxides under fluctuating anaerobic-aerobic-anaerobic conditions tested in this study. Altogether, the finding of our study is critical for obtaining a more complete understanding of the dynamics of iron redox reactions and pollutant transformation in sulfur-rich aquatic environments.

6.
J Hazard Mater ; 457: 131799, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37302186

RESUMO

Recently, hydroxyl radical (•OH) production during soil redox fluctuations has been increasingly reported, but the low efficiency of contaminant degradation is the barrier for engineering remediation. The widely distributed low-molecular-weight organic acids (LMWOAs) might greatly enhance •OH production due to their strong interactions with Fe(II) species, but it was less investigated. Herein, we found that LMWOAs amendment (i.e., oxalic acid (OA) and citric acid (CA)) significantly enhanced •OH production by 1.2 -19.5 times during oxygenation of anoxic paddy slurries. Compared with OA and acetic acid (AA) (78.4 -110.3 µM), 0.5 mM CA showed the highest •OH accumulation (140.2 µM) due to the elevated electron utilization efficiency derived from its strongest capacity for complexation. Besides, increasing CA concentrations (within 6.25 mM) dramatically enhanced the •OH production and imidacloprid (IMI) degradation (increased by 48.6%), and further decreased due to the extensive competition from excess CA. Compared to 0.5 mM CA, the synergistic effects of acidification and complexation induced by 6.25 mM CA rendered more formation of exchangeable Fe(II) that easily coordinated with CA, and thus significantly enhanced its oxygenation. This study proposed promising strategies for regulating natural attenuation of contaminants using LMWOAs in agricultural fields, especially soils with frequent occurrence of redox fluctuations.

7.
Water Res ; 221: 118799, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35780765

RESUMO

Iron in the form of (oxyhydr)oxides plays a profound role in the (im)mobilization of heavy metals in environmental geochemical processes occurring in the soil-groundwater system. Here, the influence of saltwater intrusion on Fe-(oxyhydr)oxide-mediated (im)mobilization of Ni(II) and Zn(II) in redox-fluctuating shallow aquifers was evaluated by chemical extraction, µ-XRF-XANES analysis, and 16S rRNA high-throughput sequencing. In phreatic water, the ferrihydrite-bound Ni/Zn (Fh-Ni/Zn) in soils contributed to a 12%-17% increase in carbonate-bound Ni/Zn (Cb-Ni/Zn) due to its own reductive dissolution, whereas the illite-adsorbed Ni/Zn (illite-Ni/Zn) only contributed 6%, 7%. The relative abundance of non-salt tolerant anaerobic Herbaspirillum and iron-reducing associated Ralstonia in soils accounted for nearly 50%. During the oxidation stage, the dissolved ferrihydrite reprecipitated to bind free Ni/Zn. However, saltwater invasion strongly weakened the dissolution-precipitation of ferrihydrite by inhibiting the growth of non-salt tolerant anaerobes and iron-reducing bacteria, and highlighted the contribution of illite-Ni/Zn. Under brackish water intrusion, illite-Zn contributed to a 12% increase in Cb-Zn, thereby surpassing the contribution of Fh-Zn (8%). Under seawater invasion, the dissolution-precipitation of ferrihydrite hardly occurred and the anaerobic salt-tolerant Bacillus (> 95%) prevailed. Therefore, the increase of Cb-Ni/Zn (7%-15%) in the reduction stages was contributed by illite-Ni/Zn. However, in the oxidation stages, the carbonate replaced the original role of reprecipitated ferrihydrite to bind the free Ni/Zn in solutions. These newly recognized mechanisms may be the key to predicting the mobility of toxic elements and developing appropriate remediation techniques of permeable reactive barriers under salinity stress.


Assuntos
Água Subterrânea , Solo , Ferro/análise , Oxirredução , Óxidos , RNA Ribossômico 16S , Zinco/análise
8.
J Environ Sci (China) ; 150: 432-439, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306418

RESUMO

The floodplain of the Yellow River is a typical area characterized by redox fluctuations and heavy metal pollution. However, the mobilization behavior of heavy metals in floodplain sediments during redox fluctuations remains poorly understood. In this study, reductive mobilization of Fe and Mn was observed under reducing environments through reduction and dissolution, leading to the subsequent release of adsorbed As. In contrast, the mobilization of U occurred under oxic conditions, as the oxidative state of U(VI) has higher solubility. Furthermore, insignificant effects on the mobilization of Cd, Cu, Pb, and Hg were noticed during redox fluctuations, indicating higher stability of these heavy metals. Additionally, we demonstrated that carbon sources can play a key role in the mobilization of heavy metals in floodplain sediments, amplifying the reductive mobilization of Fe, Mn, As and the oxidative mobilization of U. Our findings contribute to the understanding of the biogeochemical cycling of heavy metal in floodplain sediments of the Yellow River and the factors that control this cycling.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados , Oxirredução , Rios , Poluentes Químicos da Água , Metais Pesados/análise , Rios/química , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA