Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Environ Res ; 246: 118129, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211718

RESUMO

The depletion of finite fossil fuel reserves and the severe environmental degradation resulting from human activities have compelled the expeditious development and application of sustainable waste to energy technologies. To encapsulate energy and environment in sustainability paradigm, bio waste based energy production is need to be forged in organic bio refinery setup. According to world bioenergy association, biomass can cover 50 % of the primary energy demand of the world. Therefore, the present study focuses on reforming the energy mix for a clean energy generation, where, sample composition of cotton stalk was acidified in dilute (5% wt.) hydrochloric acid (HCL) for analyzing material burnout patterns in biomass conversion systems utilized in organic bio refinery sector. Advanced thermochemical burning technique, which includes pyrolysis and combustion was applied at four different leaching times from 0 to 180 min under nitrogen environment from 0 °C to 500 °C and air from 500 °C to 900 °C, respectively. Different analyses including proximate, ultimate, gross calorific value (GCV), thermos-gravimetric, kinetic, XRD, FTIR, SEM-EDS were used for analyzing the degradation of demineralized cotton stalk at different treatment rates. Proximate study demonstrated that cotton stalk leaching for 180 min has efficiently infused HCL, leading in a significant increase in fixed carbon and higher heating value of 20.23 % and 12.48%, respectively, as well as a reduction in carbon footprint of around 54.80%. The findings of proximate was validated by GCV analysis and CHNS analysis as value of carbon and hydrogen has shown increasing behavior with the time delay in demineralization Thermo-gravimetric and derivative thermo-gravimetric data analyses shows an increasing trend of conversion efficiency, with the maximum increase of 98 % reported for sample 3H.TT.DEM. XRD characterization has reported 23° to 25° angle for all the observed peaks. Sample 3H.TT.DEM has shown maximum angle inclination along with matured crystalline peak. The latter observations has been validated by FTIR spectroscopy as sample 3H.TT.DEM has reported maximum O-H group formation. Sample 3H.TT.DEM has reported lowest activation energy of 139.51 kJ*mole-1 and lowest reactivity of 0.000293649%*min 0C, due to moderate and stable reactiveness. In SEM examination, increment in pore size and number of pores within the structural matrix of cotton stalk was observed with the enhancement in acidulation process. Furthermore, in EDS analysis, 3H.TT.DEM has shown most balanced distribution of the elements. In this research, sustainable transformation of biomass is envisioned to improve the waste bio refinery system, significantly contributing to the achievement of Sustainable Development Goals 7, 12 and 13.


Assuntos
Carbono , Nitrogênio , Humanos , Biomassa , Nitrogênio/análise , Pirólise , Biocombustíveis/análise
2.
Biodegradation ; 35(5): 755-767, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38687419

RESUMO

The study was conducted in order to explore the potential of fungi isolated from surface and bottom seawater collected from the fishing harbour of Bizerte on the bioremediation of industrial effluent (IE) contaminated by petroleum hydrocarbon. Among the 128 fungal isolates, 11 were isolated from surface seawater and 7 from bottom seawater, representing 18 taxa in total. The gas chromatography mass spectrometry (GC-MS) was used for the determination of hydrocarbon compounds in IE. An initial screening of fungal growth using six concentrations ranged between 20 and 70% (v/v) IE has allowed the identification of the optimal concentration for fungal growth as well as selection of species able to tolerate high amounts of hydrocarbon. Colorimetric test employing 2,6-dichlorophenol indophenol and gravimetric method was applied for the assessment of fungal growth using 20% EI. By checking the phylogenetic affiliation of the high-performing stains as identified using ITSr DNA sequence, a dominance of Ascomycetes was detected. Indeed, Aspergillus terreus and Penicillium expansum may degrade 82.07 and 81.76% of residual total petroleum hydrocarbon (TPH), respectively. Both species were collected from surface seawater. While, Aspergillus niger, Colletotrichum sp and Fusarium annulatum displayed comparable degradation rates 40.43%, 41.3%, and 42.03%, respectively. The lowest rate of degradation 33.62% was detected in Emericellopsis phycophila. All those species were isolated from bottom seawater, excepting A. niger isolated from surface water. This work highlighted the importance of exploring the potential of fungi isolated from the natural environment on the bioremediation of industrial effluent. Our results promoted the investigation of the potential of the high-performing isolates A. terreus and P. expansum on the bioremediation of IE at pilot-scale and then in situ.


Assuntos
Biodegradação Ambiental , Fungos , Petróleo , Águas Residuárias , Poluentes Químicos da Água , Petróleo/metabolismo , Águas Residuárias/microbiologia , Fungos/metabolismo , Fungos/isolamento & purificação , Fungos/classificação , Poluentes Químicos da Água/metabolismo , Mar Mediterrâneo , Água do Mar/microbiologia , Hidrocarbonetos/metabolismo , Filogenia
3.
J Korean Med Sci ; 39(8): e77, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38442720

RESUMO

BACKGROUND: Considering the interactions between heavy metals, a comprehensive evaluation of the effects of exposure to various types of co-interacting heavy metals on health is required. This study assessed the association between dyslipidemia markers and blood mercury, lead, cadmium, iron, zinc, and nickel levels in residents of an abandoned refinery plant. METHODS: A total of 972 individuals (exposed group: 567, control group: 405) living near the Janghang refinery plant in the Republic of Korea were included. Blood mercury, lead, cadmium, iron, zinc, nickel, cholesterol, and triglyceride levels were measured. The combined effect of the six heavy metals on dyslipidemia markers was evaluated using a Bayesian kernel machine regression (BKMR) model and compared with the results of a linear regression analysis. The BKMR model results were compared using a stratified analysis of the exposed and control groups. RESULTS: In the BKMR model, the combined effect of the six heavy metals was significantly associated with total cholesterol (TC) levels both below the 45th percentile and above the 55th percentile in the total population. The combined effect range between the 25th and 75th percentiles of the six metals on TC levels was larger in the exposed group than that in the total population. In the control group, the combined effects of the changes in concentration of the six heavy metals on the TC concentration were not statistically significant. CONCLUSION: These results suggest that the cholesterol levels of residents around the Janghang refinery plant may be elevated owing to exposure to multiple heavy metals.


Assuntos
Dislipidemias , Mercúrio , Metais Pesados , Humanos , Cádmio , Níquel , Teorema de Bayes , Zinco , Ferro , República da Coreia
4.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125963

RESUMO

The negative environmental and social impacts of food waste accumulation can be mitigated by utilizing bio-refineries' approach where food waste is revalorized into high-value products, such as prodigiosin (PG), using microbial bioprocesses. The diverse biological activities of PG position it as a promising compound, but its high production cost and promiscuous bioactivity hinder its wide application. Metal ions can modulate the electronic properties of organic molecules, leading to novel mechanisms of action and increased target potency, while metal complex formation can improve the stability, solubility and bioavailability of the parent compound. The objectives of this study were optimizing PG production through bacterial fermentation using food waste, allowing good quantities of the pure natural product for further synthesizing and evaluating copper(II) and zinc(II) complexes with it. Their antimicrobial and anticancer activities were assessed, and their binding affinity toward biologically important molecules, bovine serum albumin (BSA) and DNA was investigated by fluorescence emission spectroscopy and molecular docking. The yield of 83.1 mg/L of pure PG was obtained when processed meat waste at 18 g/L was utilized as the sole fermentation substrate. The obtained complexes CuPG and ZnPG showed high binding affinity towards target site III of BSA, and molecular docking simulations highlighted the affinity of the compounds for DNA minor grooves.


Assuntos
Complexos de Coordenação , Cobre , DNA , Simulação de Acoplamento Molecular , Prodigiosina , Soroalbumina Bovina , Zinco , Prodigiosina/química , Prodigiosina/metabolismo , Prodigiosina/farmacologia , Cobre/química , Cobre/metabolismo , Zinco/metabolismo , Zinco/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , DNA/metabolismo , DNA/química , Animais , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Humanos , Bovinos , Antineoplásicos/farmacologia , Antineoplásicos/química , Sítios de Ligação
5.
J Environ Manage ; 354: 120356, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377757

RESUMO

As of 2022, China has achieved a crude oil processing capacity of 918 million tons, leading to a notable escalation in the production of refinery wastewater. The composition of refinery wastewater is intricate and diverse, posing a substantial challenge to its treatment. In order to facilitate appropriate discharge or reuse, an exhaustive separation process is imperative for refinery wastewater. Conventional pre-treatment processes typically employ inclined plate separators and dissolved air flotation (DAF) for the removal of oil and suspended solids (SS), while sequencing batch reactor (SBR), oxidation ditch, or biological aerated filter (BAF) are employed for the biological treatment process. However, these approaches encounter challenges such as a large spatial footprint, suboptimal treatment efficiency, and high energy consumption. In response to these challenges, this study introduces a novel integrated apparatus consisting of a high-efficiency oil remover (HEOR), coalescence oil remover (COR), and an airlift-enhanced loop bioreactor (AELR). A pilot-scale test was conducted to evaluate the performance of this integrated system in practical field applications. The pilot-scale tests reveal that, without the addition of chemical agents, the petroleum removal efficiency of "HEOR + COR" system was 1.2 times that of DAF. Compared with the SBR system, AELR's volume loading was increased by 1.56 times. The effluent quality achieved in the pilot-scale tests attained parity with that the original process. The "HEOR + COR + AELR" system exhibited energy and carbon emissions reduction of 28% and 30% compared to the "DAF + SBR" system, respectively. Therefore, the operating costs was reduced by approximate 1 Chinese Yuan (CNY) per ton of treated water. This technological advancement serves as a valuable reference for the implementation of low-carbon treatment of refinery wastewater.


Assuntos
Petróleo , Purificação da Água , Águas Residuárias , Eliminação de Resíduos Líquidos , Reatores Biológicos , Carbono
6.
J Environ Manage ; 368: 122104, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39121620

RESUMO

A ca. 76% decrease in gross alpha activity levels, measured in surface aerosols collected in the city of Santa Cruz de Tenerife (Spain), has been explained in the present study in connection with the reduction of activities, and eventual closure, of an oil refinery in the city. Gross Alpha in surface aerosols, collected at weekly intervals over a period of 22 years (2001-2022), was used for the analysis. The dynamic behaviour of the gross alpha time series was studied using statistical wavelet, multifractal analysis, empirical decomposition method, multivariate analysis, principal component, and cluster analyses approaches. This was performed to separate the impact of other sources of alpha emitting radionuclides influencing the gross alpha levels at this site. These in-depth analyses revealed a noteworthy shift in the dynamic behaviour of the gross alpha levels following the refinery's closure in 2013. This analysis also attributed fluctuations and trends in the gross alpha levels to factors such as the 2008 global economic crisis and the refinery's gradual reduction of activity leading up to its closure. The mixed-model approach, incorporating multivariate regression and autoregressive integrated moving average methods, explained approximately 84% of the variance of the gross alpha levels. Finally, this work underscored the marked reduction in alpha activity levels following the refinery's closure, alongside the decline of other pollutants (CO, SO2, NO, NO2, Benzene, Toluene and Xylene) linked to the primary industrial activity in the municipality of Santa Cruz de Tenerife.

7.
J Environ Manage ; 351: 119827, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113788

RESUMO

Oil petroleum production consumes about 1.0-7.2 bbl. The needed water for such production ranges between 0.47 and 7.2 L water to 1.0 L crude. Between 80 and 90% of the consumed water is disposed of as wasted effluents. Consequently, there is an important connection between petroleum production and the contamination of the environment and surface water in addition to their ecotoxicological effects. The objective of the present review is to through light on the hazardous impact of petroleum wastewater on the environment and water ways. The present study presents several wastewater treatment technologies in handling the petroleum produced water (PPW) and reducing the hazardous impact to the environment. Safe reuse is also presented including simple, advanced, and environmentally friendly techniques. The reported treatment technologies are divided into five main categories: membrane technologies, biological treatment processes, electro-chemical coagulation, physical/chemical treatment processes (dissolved air flotation (DAF)/air flotation (IAF), adsorption, and chemical flocculation), and catalytic oxidation including chemicals such as advanced and Fenton oxidation processes (AOPs). The analysis and observation of each treatment process are also presented. Implementing of these processes in sequential and/or in combined to avoid the drawbacks of any poor treatment are discussed. The present review discusses; also, in detail each of these treatment technologies and their efficiency including the observation and conclusions of each one. The study shows; also; how the final treated effluent can be reused for non-potable purposes as an additional water resource according to the degree of decontamination. An additional advantage of treatment is protection of both the environment and the water ways by avoiding any discharge of such hazardous wastewater.


Assuntos
Petróleo , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Petróleo/análise , Eliminação de Resíduos Líquidos/métodos , Conservação dos Recursos Naturais , Água/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
8.
J Sci Food Agric ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39113599

RESUMO

Biomass is a valuable renewable energy adapted as an alternative to traditional fossil fuels. Apart from fuels, biomass is synthesized into highly valuable products that are used in various forms including biofuels, biochemical, bioproducts, packing material, and find practice in pharmaceutical, cosmetics, and nutraceuticals industries. Particularly, microalgae a third-generation feedstock known for its rich carbon content possesses protein lipids and carbohydrates produces a variety of green products such as bioethanol, biohydrogen, biodiesel, and biomethane, and also fixes carbon emission to a certain amount in the atmosphere. However, microalgae conversion in the presence of a catalyst such as a metal-organic framework (MOF) yields high-quality valuable products. A MOF is a porous crystalline material where the structure and pore size can be controlled making it suitable for catalytic reactions and appropriate conversion paths. This review briefly explains the prevailing status of microalgae as a sustainable biomass and features its components for microalgae biorefinery into valuable products and its application in the food industry. MOF properties, characteristics and various MOF-based conversion technologies for biomass conversion with its application are elaborated. In addition, usage of value products produced from microalgae biorefinery in the food industry and its importance is elucidated. In addition, the challenges in integrating biorefinery processes with food industry operations and their solutions are also presented. © 2024 Society of Chemical Industry.

9.
Angew Chem Int Ed Engl ; : e202408504, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884612

RESUMO

The photocatalytic conversion of biomass and plastic waste provides opportunities for sustainable fuel and chemical production. Heterogeneous photocatalysts, typically composed of semiconductors with distinctive redox properties in their conduction band (CB) and valence band (VB), facilitate both the oxidative and reductive valorization of organic feedstocks. This article provides a comprehensive overview of recent advancements in the photorefinery of biomass and plastics from the perspective of the redox properties of photocatalysts. We explore the roles of the VB and CB in enhancing the value-added conversion of biomass and plastics via various pathways. Our aim is to bridge the gap between photocatalytic mechanisms and renewable carbon feedstock valorization, inspiring further development in photocatalytic refinery of biomass and plastics.

10.
Angew Chem Int Ed Engl ; : e202411542, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132837

RESUMO

Electrooxidation of biomass-derived glycerol which is regarded as a main byproduct of industrial biodiesel production, is an innovative strategy to produce value-added chemicals, but currently showcases slow kinetics, limited Faraday efficiency, and unclear catalytic mechanism. Herein, we report high-efficiency electrooxidation of glycerol into formate via a Cu doped NiCo alloy catalyst supported on nickel foam (Cu-NiCo/NF) in a coupled system paired with nitrate reduction. The designed Cu-NiCo/NF delivers only 1.23 V vs. RHE at 10 mA cm-2, and a record Faraday efficiency of formate of 93.8%. The superior performance is ascribed to the rapid generation of NiIII-OOH and CoIII-OOH and favorable coupling of surface *O with reactive intermediates. Using Cu-NiCo/NF as a bifunctional catalyst, the coupled system synchronously produces NH3 and formate, showing 290 mV lower than the coupling of hydrogen evolution reaction, together with excellent long-term stability for up to 144 h. This work lays out new guidelines and reliable strategies from catalyst design to system coupling for biomass-derived electrochemical refinery.

11.
Environ Sci Technol ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608330

RESUMO

In 2019, U.S. petroleum refineries emitted 196 million metric tons (MT) of CO2, while the well-to-gate and the full life cycle CO2 emissions were significantly higher, reaching 419 and 2843 million MT of CO2, respectively. This analysis examines decarbonization opportunities for U.S. refineries and the cost to achieve both refinery-level and complete life-cycle CO2 emission reductions. We used 2019 life-cycle CO2 emissions from U.S. refineries as a baseline and identified three categories of decarbonization opportunity: (1) switching refinery energy inputs from fossil to renewable sources (e.g., switch hydrogen source); (2) carbon capture and storage of CO2 from various refining units; and (3) changing the feedstock from petroleum crude to biocrude using various blending levels. While all three options can reduce CO2 emissions from refineries, only the third can reduce emissions throughout the life cycle of refinery products, including the combustion of fuels (e.g., gasoline and diesel) during end use applications. A decarbonization approach that combines strategies 1, 2, and 3 can achieve negative life-cycle CO2 emissions, with an average CO2 avoidance cost of $113-$477/MT CO2, or $54-$227/bbl of processed crude; these costs are driven primarily by the high cost of biocrude feedstock.

12.
Environ Res ; 227: 115791, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36997042

RESUMO

Recent Iraqi battles against ISIS in 2014 and 2015 resulted in the destruction or severe damage to several refineries' infrastructure. This, along with other factors, has led to the release and accumulation of a wide range of hazardous chemicals into the environment, for instance, polycyclic aromatic hydrocarbons (PAH). Thus, for the first time, a comprehensive 16 PAHs measurements campaign over the course of six months near the oil refineries along the Tigris River and its estuaries was investigated. The 16 PAHs concentrations in surface water and the sediments for the following oil refineries: Baiji, Kirkuk, Al-Siniyah, Qayyarah, Al-Kasak, Daura, South Refineries Company, and Maysan were examined. The overall findings indicated that the 16 PAHs concentrations ranged from 567.8 to 3750.7 ng/L for water and 5619.2-12795.0 ng/g for sediment. Water samples in South Refineries Company recorded the highest PAH concentrations while Baiji oil refinery registered the highest PAH concentrations in the sediment samples. The percentages of high molecular weight PAH (5-6 rings) in water and sediment samples were the highest, ranging from 49.41% to 81.67% and from 39.06% to 89.39% of total PAH for water and sediment, respectively. The majority of 16 PAHs measured in water and sediment samples of the Tigris River were derived from pyrogenic sources. Based on sediment quality guidelines (SQGs), most sites showed a possible effect range with occasional biological effects of most of the PAH concentrations in all sediments' samples. The calculated incremental lifetime cancer risk (ILCR) value was high risk with adverse health effects, including cancer.


Assuntos
Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Iraque , Rios/química , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Monitoramento Ambiental/métodos , Medição de Risco , Água , Indústria de Petróleo e Gás , China
13.
Bioprocess Biosyst Eng ; 46(11): 1613-1625, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37656256

RESUMO

This study investigated the MBR performance, sludge morphology, and membrane fouling potential in treating sunflower oil refinery wastewater containing high oleic acid at three different SRTs of 10 days, 40 days, and infinite. The analysis of mixed liquor morphology including sludge volume index, PSD, EPS, and SMP showed that the sludge flocs compressibility and bioflocculation considerably improved at 40-days SRT. Additionally, at this SRT, the mixed liquor O&G, COD, and SMP accumulation were low, and the microbial activity and COD removal were enhanced. The gas chromatography/mass spectrometry analysis results confirmed the formation of three different new compounds related to non-readily biodegradable recalcitrant oily compounds and SMP at all SRTs. The analysis of mixed liquor EPS, PSD, SMP, and effluent COD at three different SRTs suggests that under the industrial conditions of MBR operation treating SORW with high oleic acid, the optimal operating conditions are predicted to be at 40-days SRT.


Assuntos
Helianthus , Águas Residuárias , Esgotos/química , Ácido Oleico , Óleo de Girassol , Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos
14.
Sensors (Basel) ; 23(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37765914

RESUMO

This study investigates the integration of soft sensors and deep learning in the oil-refinery industry to improve monitoring efficiency and predictive accuracy in complex industrial processes, particularly de-ethanization and debutanization. Soft sensor models were developed to estimate critical variables such as the C2 and C5 contents in liquefied petroleum gas (LPG) after distillation and the energy consumption of distillation columns. The refinery's LPG purification process relies on periodic sampling and laboratory analysis to maintain product specifications. The models were tested using data from actual refinery operations, addressing challenges such as scalability and handling dirty data. Two deep learning models, an artificial neural network (ANN) soft sensor model and an ensemble random forest regressor (RFR) model, were developed. This study emphasizes model interpretability and the potential for real-time updating or online learning. The study also proposes a comprehensive, iterative solution for predicting and optimizing component concentrations within a dual-column distillation system, highlighting its high applicability and potential for replication in similar industrial scenarios.

15.
J Environ Manage ; 342: 118362, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37311343

RESUMO

In the present study a sequential process composed of electrocoagulation (EC) followed by electrooxidation (EO) was utilized at the laboratory scale to remove the chemical oxygen demand (COD) from wastewater generated in Iraqi vegetable oil refinery plant.in the EC, impacts of operating variables such as current density (10-30 mA cm-2) and pH (4-10),and EC time (30-90 min) on the COD removal (RE%) were investigated using response surface methodology (RSM) based on Box- Behnken design(BBD). a mathematical correlation that relates the operating factors with RE% was developed and its regression coefficient was 99.02% confirming the significant of the model. Response surface plots showed that RE% increased with increasing current density and time while it decreased with increasing pH. The optimum removal with a lower cost for EC process were achieved at current density of 30mA/cm2, pH of 4, and electrolysis time of 90 min in which RE% of 69.19% was obtained with requirement of 0.513kWh/kg COD as specific energy consumption (SEC). The effluent exit from EC was treated by EO for a period of 240min at a current density of 30mA/cm2 and an initial pH value of 4 to obtain RE% of 96% at SEC of 1.554 kWh/kg COD. Combining EC with EO resulted in a total RE% of 98.72% and a total SEC of 2.067 kWh/kg COD. Based on the results of present study, the applicability of a sequential electrocoagulation-electrooxidation process for treatment vegetable oil wastewaters is feasible.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Verduras , Eletrocoagulação/métodos , Óleos de Plantas
16.
J Environ Manage ; 332: 117350, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36701830

RESUMO

In this study, an airlift reactor (ALR) has been employed to evaluate the carbon dioxide fixation rate (Rc) and lipid yield (LY) of unicellular green microalgae Scenedesmus sp. ASK22, using dairy effluent as a biofuel feedstock. Independent process parameters (PPs) such as light intensity, CO2 concentration, and aeration rate and their effect on Rc and LY were revealed. The central composite design (CCD) was used to optimize the PPs. The best-operating conditions were measured as light intensity -6.24 Klux, CO2 concentration -14.03% (v v-1), and aeration rate -1.02 liter per minute (LPM). Under these conditions, LY and Rc were found to be 4.22 gL-1 and 1.27 gL-1d-1 which were 2.24- and 1.94-fold higher than the value obtained in the control experiment (1.88 gL-1 and 0.656 gL-1d-1) at the end of 12th day. The corresponding values for bioremediation of nitrate, phosphate, as well as chemical oxygen demand (COD), remained within 98-100%. The biochemical, CHN, thermogravimetric, and fatty acid analysis of Scenedesmus sp. ASK22 biomass and lipid confirmed their potential as a clean biofuel feedstock. Furthermore, a comprehensive analysis of lipid-extracted microalgae biomass (LEMB) was carried out suggesting that LEMB could be used as a high-quality cattle and fish feed, fertilizers, and a sustainable source for biogas, bioethanol, and bio-oils. In addition to improving the developed system's efficiency, a semi-continuous regime was implemented which resulted in biomass productivity of 1.89 gL-1d-1 which was 2.6-fold higher than the batch cultivation without hampering lipid productivity (0.377 gL-1d-1). The present results suggest that Scenedesmus sp. ASK22 is a potential candidate for CO2 sequestration from atmosphere/flue gas, biofuel production (biodiesel, bioethanol, biogas, biobutanol, etc.), and waste remediation.


Assuntos
Microalgas , Scenedesmus , Animais , Bovinos , Biocombustíveis/análise , Dióxido de Carbono/análise , Ácidos Graxos , Biodegradação Ambiental , Biomassa
17.
J Environ Manage ; 345: 118834, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659365

RESUMO

Treating wastewater using purple non-sulfur bacteria (PNSB) is an environmentally friendly technique that can simultaneously remove pollutants and lead to the accumulation of high-value cell inclusions. However, no PNSB system for treating heavy oil refinery wastewater (HORW) and recovering high-value cell inclusions has yet been developed. In this study, five batch PNSB systems dominated by Rhodopseudomonas were used to treat real HORW for 186 d. The effects of using different hydraulic retention times (HRT), sludge retention times (SRT), trace element solutions, phosphate loads, and influent loads were investigated, and the bacteriochlorophyll, carotenoid, and coenzyme Q10 concentrations were determined. The community structure and quantity of Rhodopseudomonas in the systems were determined using a high-sequencing technique and quantitative polymerase chain reaction technique. The long-term results indicated that phosphate was the limiting factor for treating HORW in the PNSB reactor. The soluble chemical oxygen demand (SCOD) removal rates were 67.03% and 85.26% without and with phosphate added, respectively, and the NH4+-N removal rates were 32.18% and 89.22%, respectively. The NO3--N concentration in the effluent was stable at 0-3 mg/L with or without phosphate added. Adding phosphate increased the Rhodopseudomonas relative abundance and number by 13.21% and 41.61%, respectively, to 57.35% and 8.52 × 106 gene copies/µL, respectively. The SRT was the limiting factor for SCOD removal, and the bacteria concentration was the limiting factor for nitrogen removal. Once the inflow load had been increased, the total nitrogen (TN) removal rate increased as the HRT increased. Maximum TN removal rates of 64.46%, 68.06%, 73.89%, 82.15%, and 89.73% were found at HRT of 7, 10, 13, 16, and 19 d, respectively. The highest bacteriochlorophyll, carotenoid, and coenzyme Q10 concentrations were 2.92, 4.99, and 4.53 mg/L, respectively. This study provided a simple and efficient method for treating HORW and reutilizing resources, providing theoretical support and parameter guidance for the application of Rhodopseudomonas in treating HORW.


Assuntos
Poluentes Ambientais , Rodopseudomonas , Águas Residuárias , Ubiquinona , Bacterioclorofilas , Esgotos , Carotenoides , Nitrogênio , Indústria de Petróleo e Gás , Fosfatos
18.
Molecules ; 28(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37764219

RESUMO

Using different bleaching materials to eliminate or reduce organic volatiles in deteriorated olive oils will positively affect its characteristics. This study aims to identify the volatiles of oxidized olive oil after physical bleaching using selected immobilized adsorbents. Oxidized olive oil was eluted using open-column chromatography packed with silica gel, bentonite, resin, Arabic gum, and charcoal at a 1:5 eluent system (w/v, adsorbent: oxidized olive oil). The smoke point was determined. The collected distilled vapor was injected into GC-MS to identify the volatiles eluted after partial refining with each of these bleaching compounds. The results showed that volatile compounds were quantitatively and qualitatively affected by the type of adsorbents used for the elution of olive oil and the smoking points of eluted oils. The most prominent detected volatile compounds were limonene (14.53%), piperitone (10.35%), isopropyl-5-methyl-(2E)-hexenal (8.6%), methyl octadecenoate (6.57%), and citronellyl acetate (5.87%). Both bentonite and resin were superior in decreasing the ratio of volatile compounds compared with other bleaching materials used. Resin immobilized medium was significantly affected (p < 0.05), raising the smoke point. These results highlighted some information regarding the characteristics of volatile compounds that result after the physical elution of olive oil through selected adsorbents.


Assuntos
Bentonita , Carvão Vegetal , Cromatografia Gasosa-Espectrometria de Massas , Azeite de Oliva , Alimentos , Ácido Hipocloroso , Resinas Vegetais , Compostos de Sódio
19.
Environ Monit Assess ; 195(11): 1272, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37794217

RESUMO

Emissions of greenhouse gases from industrial facilities, such as refineries, are one of the most significant environmental problems in many countries. This study aimed to assess the present status of emission sources near a gas refinery region, and the contribution of sources to air pollution was estimated by monitoring CO for a year at a fixed station. This descriptive-analytical study was conducted between January and December 2020. A simulation of CO gas distribution and pollutant concentration prediction was carried out. The results show that the maximum concentration of CO in the 1-h period was 2260 µg/m3, which corresponds to the peak concentration in spring, and in the 8-h period, it was 573 µg/m3, which corresponds to the peak concentration in winter. The studied area's maximum pollutant concentration was also compared to national and international standards for clean air. In all four seasons, the maximum simulated CO concentrations were lower than the Iranian and EPA standards for clean air. Maximum concentrations have occurred in the southern slopes of the study area's heights, and, due to the appropriate wind speed, maximum concentrations in the northeastern mountain peaks occurred at a more considerable distance due to the high altitude of the mountains and the lack of suitable conditions for pollutant escape. Furthermore, because of the height of smokestacks and flares from the ground and the effect of wind on the release height, the concentration of pollutants at the foot of the stacks is low and decreases gradually over a certain distance. Finally, the distribution and deposition of pollutants in the pathway of the smoke were influenced by the type of topography.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Irã (Geográfico) , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Oriente Médio
20.
Angew Chem Int Ed Engl ; 62(32): e202307116, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37296524

RESUMO

Lignin solubilization and in situ hydrogenolysis are crucial for reductive catalytic fractionation (RCF) of lignocellulose to aromatic monomers. In this study, we reported a typical hydrogen bond acceptor of choline chloride (ChCl) to tailor the hydrogen-donating environment of the Ru/C-catalyzed hydrogen-transfer RCF of lignocellulose. The ChCl-tailored hydrogen-transfer RCF of lignocellulose was conducted under mild temperature and low-pressure (<1 bar) conditions, which was applicable to other lignocellulosic biomass sources. We obtained an approximate theoretical yield of propylphenol monomer of 59.2 wt % and selectivity of 97.3 % using an optimal content of ChCl (10 wt %) in ethylene glycol at 190 °C for 8 h. When the content of ChCl in ethylene glycol was increased to 110 wt %, the selectivity of propylphenol switched toward propylenephenol (yield of 36.2 wt % and selectivity of 87.6 %). The findings in this work provide valuable information for transforming lignin from lignocellulose into value-added products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA