Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Biol ; 433(2): 227-239, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29291975

RESUMO

The axolotl (Ambystoma mexicanum) is the vertebrate model system with the highest regeneration capacity. Experimental tools established over the past 100 years have been fundamental to start unraveling the cellular and molecular basis of tissue and limb regeneration. In the absence of a reference genome for the Axolotl, transcriptomic analysis become fundamental to understand the genetic basis of regeneration. Here we present one of the most diverse transcriptomic data sets for Axolotl by profiling coding and non-coding RNAs from diverse tissues. We reconstructed a population of 115,906 putative protein coding mRNAs as full ORFs (including isoforms). We also identified 352 conserved miRNAs and 297 novel putative mature miRNAs. Systematic enrichment analysis of gene expression allowed us to identify tissue-specific protein-coding transcripts. We also found putative novel and conserved microRNAs which potentially target mRNAs which are reported as important disease candidates in heart and liver.


Assuntos
Ambystoma mexicanum/genética , Regulação da Expressão Gênica , RNA Mensageiro/genética , Regeneração/genética , Transcrição Gênica , Transcriptoma , Ambystoma mexicanum/fisiologia , Animais , Feminino , Biblioteca Gênica , Ontologia Genética , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Especificidade de Órgãos , Análise de Componente Principal , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/genética , Análise de Sequência de RNA , Especificidade da Espécie
2.
Mol Hum Reprod ; 19(7): 407-14, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23475985

RESUMO

The endometrium is recognized for its remarkable regenerative and remodeling capacity. Every month this hormonally regulated organ undergoes cycles of growth (from 0.5-2 to 7 mm), regression and shedding of two-third of the tissue, leading to its monthly renewal that occurs ∼400 times in a woman's reproductive lifetime. Several groups have suggested the existence of a human endometrial somatic stem cell (SSC) population located around the spiral arterioles of the basalis. Different groups have isolated, identified and characterized putative endometrial SSC populations in human endometrium based on the general features of undifferentiated cells, such as slow cycling detected using the 5-bromo-2-deoxyuridine technique or identification of a side population using the Hoechst efflux dye technique. Nevertheless, specific markers to isolate these endometrial SSC have not yet been consistently elucidated. Accumulated evidence based on lineage tracing studies indicates that a surface protein named Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) is a marker that can identify SSC in several tissues such as small intestine mucosa (endodermal origin), hair follicles (ectodermal origin) or mature kidney nephrons (mesodermal origin). This protein plays a crucial role in the Wnt/ß-catenin signaling system by acting on the self-renewal and maintenance of the SSC population. In this work, we present novel data suggestive of Lgr5 as a putative human endometrial SSC marker, and since this is a mesoderm-derived tissue, these findings reinforce the concept that Lgr5 can be considered a universal SSC marker.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Endométrio/citologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Feminino , Humanos , Camundongos , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA