Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Anal Bioanal Chem ; 416(25): 5445-5456, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38135762

RESUMO

C-type lectin receptors (CLRs), which are pattern recognition receptors responsible for triggering innate immune responses, recognize damaged self-components and immunostimulatory lipids from pathogenic bacteria; however, several of their ligands remain unknown. Here, we propose a new analytical platform combining liquid chromatography-high-resolution tandem mass spectrometry with microfractionation capability (LC-FRC-HRMS/MS) and a reporter cell assay for sensitive activity measurements to develop an efficient methodology for searching for lipid ligands of CLR from microbial trace samples (crude cell extracts of approximately 5 mg dry cell/mL). We also developed an in-house lipidomic library containing accurate mass and fragmentation patterns of more than 10,000 lipid molecules predicted in silico for 90 lipid subclasses and 35 acyl side chain fatty acids. Using the developed LC-FRC-HRMS/MS system, the lipid extracts of Helicobacter pylori were separated and fractionated, and HRMS and HRMS/MS spectra were obtained simultaneously. The fractionated lipid extract samples in 96-well plates were thereafter subjected to reporter cell assays using nuclear factor of activated T cells (NFAT)-green fluorescent protein (GFP) reporter cells expressing mouse or human macrophage-inducible C-type lectin (Mincle). A total of 102 lipid molecules from all fractions were annotated using an in-house lipidomic library. Furthermore, a fraction that exhibited significant activity in the NFAT-GFP reporter cell assay contained α-cholesteryl glucoside, a type of glycolipid, which was successfully identified as a lipid ligand molecule for Mincle. Our analytical platform has the potential to be a useful tool for efficient discovery of lipid ligands for immunoreceptors.


Assuntos
Lipidômica , Lipídeos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Ligantes , Humanos , Animais , Lipídeos/análise , Lipídeos/química , Camundongos , Cromatografia Líquida/métodos , Lipidômica/métodos , Receptores Imunológicos/metabolismo , Lectinas Tipo C/metabolismo
2.
J Pediatr Gastroenterol Nutr ; 78(4): 886-897, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38390691

RESUMO

OBJECTIVE: Pediatric nonalcoholic fatty liver disease (NAFLD) is a growing problem, but its underlying mechanisms are poorly understood. We used transcriptomic reporter cell assays to investigate differences in transcriptional signatures induced in hepatocyte reporter cells by the sera of children with and without NAFLD. METHODS: We studied serum samples from 45 children with NAFLD and 28 children without NAFLD. The sera were used to induce gene expression in cultured HepaRG cells and RNA-sequencing was used to determine gene expression. Computational techniques were used to compare gene expression patterns. RESULTS: Sera from children with NAFLD induced the expression of 195 genes that were significantly differentially expressed in hepatocytes compared to controls with obesity. NAFLD was associated with increased expression of genes promoting inflammation, collagen synthesis, and extracellular matrix remodeling. Additionally, there was lower expression of genes involved in endobiotic and xenobiotic metabolism, and downregulation of peroxisome function, oxidative phosphorylation, and xenobiotic, bile acid, and fatty acid metabolism. A 13-gene signature, including upregulation of TREM1 and MMP1 and downregulation of CYP2C9, was consistently associated with all diagnostic categories of pediatric NAFLD. CONCLUSION: The extracellular milieu of sera from children with NAFLD induced specific gene profiles distinguishable by a hepatocyte reporter system. Circulating factors may contribute to inflammation and extracellular matrix remodeling and impair xenobiotic and endobiotic metabolism in pediatric NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Criança , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Xenobióticos/metabolismo , Hepatócitos , Inflamação/metabolismo , Células Cultivadas , Fígado/metabolismo
3.
Cytokine ; 138: 155399, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33338916

RESUMO

BACKGROUND: The overall clinical outcome of inflammatory conditions is the result of the balance between pro-inflammatory and anti-inflammatory mediators. Because nuclear factor kappa B (NF-ĸB) is at the bottom of many inflammatory conditions, methods to evaluate the net effect of inflammation modulators on this master regulator have been conceptualized for years. METHODS: Using an ex vivo NF-ĸB reporter cell line-based assay, plasma samples of patients with rheumatoid arthritis (n = 27), psoriasis (n = 15), or severe coronavirus disease-19 (COVID-19) (n = 21) were investigated for NF-ĸB activation compared to plasma samples from 9 healthy volunteers. RESULTS: When separated by C-reactive protein (CRP) threshold levels, samples of patients exhibiting increased CRP levels (≥5 mg/l) activated NF-ĸB more efficiently than samples from patients with levels below 5 mg/l (P = 0.0001) or healthy controls (P = 0.04). Overall, there was a moderate association of CRP levels with NF-ĸB activation (Spearman r = 0.66; p < 0.0001). Plasma from COVID-19 patients activated NF-ĸB more efficiently (mean 2.4-fold compared to untreated reporter cells) than samples from any other condition (healthy controls, 1.8-fold, P = 0.0025; rheumatoid arthritis, 1.7-fold, P < 0.0001; psoriasis, 1.7-fold, P < 0.0001). In contrast, effects of rheumatoid arthritis, psoriasis, or healthy volunteer samples did not differ. CONCLUSION: This study shows that a NF-ĸB reporter cell line can be used to evaluate the net inflammatory effect of clinical plasma samples. Patients with chronic but stable rheumatoid arthritis or psoriasis do not exhibit increased plasma levels of NF-ĸB-activating compounds as opposed to COVID-19 patients with high inflammatory burden.


Assuntos
Artrite Reumatoide/patologia , COVID-19/patologia , NF-kappa B/sangue , NF-kappa B/metabolismo , Psoríase/patologia , Artrite Reumatoide/sangue , Proteína C-Reativa/análise , Linhagem Celular , Ativação Enzimática/fisiologia , Feminino , Células HEK293 , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Psoríase/sangue , SARS-CoV-2/imunologia
4.
Anal Biochem ; 596: 113646, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32112722

RESUMO

Quantification of therapeutic antibodies is commonly based on physico-chemical assays such as enzyme-linked immunoabsorption assays (ELISA) and lately on mass spectrometry. However, the functional integrity of evaluated immunoglobulins is yet not assessed. Consequently, a commercially available reporter cell line was used to quantify the functional concentration of the anti-tumor necrosis factor alpha (TNF-α) antibody adalimumab present in serum of a healthy beagle dog treated with 3 mg intravenous adalimumab (Humira®). HEK-Blue™-hTLR3 cells express a secreted alkaline phosphatase under the control of a nuclear factor kappa B (NF-κB) response element. Its enzymatic activity can be recorded using colorimetry, which reports activity of extracellular NF-κB stimuli such as TNF-α. Using an adalimumab concentration-response calibration curve, the functional concentration of serum adalimumab was estimated to be 4.9 ± 1.4 µg/ml, which was in excellent agreement with ELISA results (4.8 µg/ml). The obtained data suggest that this simple, easy-to-handle reporter cell assay can be used for the functional quantification of adalimumab present in samples from in vitro or pre-clinical in vivo experiments. Moreover, this assay could be used in vitro to compare the pharmacodynamics of adalimumab biosimilars or different anti-TNF-α compounds, respectively.


Assuntos
Adalimumab/sangue , Adalimumab/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adalimumab/administração & dosagem , Administração Intravenosa , Animais , Células Cultivadas , Cães , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos
5.
Methods Mol Biol ; 2613: 23-31, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587068

RESUMO

The cell envelopes of pathogens comprise a wealth of unique glycolipids, which are important modulators of the host immune responses during infection and in some cases have been used as adjuvants. Despite this abundant basic knowledge, the identities of the host immune receptors for mycobacterial lipids have long been elusive (Ishikawa et al., Trends Immunol 38:66-76, 2017). We describe the method of how to isolate glycolipids from microorganisms and how to analyze the glycolipids' potential to activate reporter cells and bone marrow-derived dendritic cells (BMDCs), such as surface marker expression and reactive oxygen species (ROS) production. Additionally, we outline an in vitro BMDC/T cell coculture model to investigate functional consequences of leukocyte activation, such as cytokine production. In this chapter, we provide a guide for extracting glycolipids from microorganisms and how to use them to activate leukocytes. We also present methods on how to generate and activate reporter cells, as well as BMDCs and how to set up BMDC/T cell cocultures. We further outline how to generate samples and how to analyze the immunomodulatory effect glycolipid exposure has on these cells, via flow cytometry, ROS production assays and ELISA.


Assuntos
Glicolipídeos , Linfócitos T , Glicolipídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adjuvantes Imunológicos , Apresentação de Antígeno , Células Dendríticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA