Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 463(4): 1021-7, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26072375

RESUMO

Our previous studies provided evidence that mammalian mitochondrial DNA (mtDNA) mutations that cause mitochondrial respiration defects behave in a recessive manner, because the induction of respiration defects could be prevented with the help of a small proportion (10%-20%) of mtDNA without the mutations. However, subsequent studies found the induction of respiration defects by the accelerated accumulation of a small proportion of mtDNA with various somatic mutations, indicating the presence of mtDNA mutations that behave in a dominant manner. Here, to provide the evidence for the presence of dominant mutations in mtDNA, we used mouse lung carcinoma P29 cells and examined whether some mtDNA molecules possess somatic mutations that dominantly induce respiration defects. Cloning and sequence analysis of 40-48 mtDNA molecules from P29 cells was carried out to screen for somatic mutations in protein-coding genes, because mutations in these genes could dominantly regulate respiration defects by formation of abnormal polypeptides. We found 108 missense mutations existing in one or more of 40-48 mtDNA molecules. Of these missense mutations, a T15091C mutation in the Cytb gene was expected to be pathogenic due to the presence of its orthologous mutation in mtDNA from a patient with cardiomyopathy. After isolation of many subclones from parental P29 cells, we obtained subclones with various proportions of T15091C mtDNA, and showed that the respiration defects were induced in a subclone with only 49% T15091C mtDNA. Because the induction of respiration defects could not be prevented with the help of the remaining 51% mtDNA without the T15091C mutation, the results indicate that the T15091C mutation in mtDNA dominantly induced the respiration defects.


Assuntos
Citocromos b/genética , DNA Mitocondrial/genética , Mutação de Sentido Incorreto , Animais , Linhagem Celular Tumoral , Camundongos
2.
Biochem Biophys Res Commun ; 459(1): 66-70, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25721669

RESUMO

We previously generated mito-mice-tRNA(Lys7731) as a model for primary prevention of mitochondrial diseases. These mice harbour a G7731A mtDNA mutation in the tRNA(Lys) gene, but express only muscle weakness and short body length by four months. Here, we examined the effects of their aging on metabolic and histologic features. Unlike young mito-mice-tRNA(Lys7731), aged mito-mice-tRNA(Lys7731) developed muscle atrophy, renal failures, and various metabolic abnormalities, such as lactic acidosis and anemia, characteristic of patients with mitochondrial diseases. These observations provide convincing evidence that the respiration defects induced by high G7731A mtDNA levels cause these late-onset disorders that are relevant to mitochondrial diseases.


Assuntos
Doenças Mitocondriais/genética , Mutação , RNA de Transferência de Lisina/genética , Idade de Início , Envelhecimento/genética , Animais , DNA Mitocondrial , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos , Camundongos Mutantes , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/mortalidade , Doenças Mitocondriais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA