Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
BMC Plant Biol ; 20(1): 208, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32397958

RESUMO

BACKGROUND: Agrobacterium rhizogenes-mediated (ARM) transformation is a highly efficient technique for generating composite plants composed of transgenic roots and wild-type shoot, providing a powerful tool for studying root biology. The ARM transformation has been established in many plant species, including soybean. However, traditional transformation of soybean, transformation efficiency is low. Additionally, the hairy roots were induced in a medium, and then the generated composite plants were transplanted into another medium for growth. This two-step operation is not only time-consuming, but aggravates contamination risk in the study of plant-microbe interactions. RESULTS: Here, we report a one-step ARM transformation method with higher transformation efficiency for generating composite soybean plants. Both the induction of hairy roots and continuous growth of the composite plants were conducted in a single growth medium. The primary root of a 7-day-old seedling was decapitated with a slanted cut, the residual hypocotyl (maintained 0.7-1 cm apical portion) was inoculated with A. rhizogenes harboring the gene construct of interest. Subsequently, the infected seedling was planted into a pot with wet sterile vermiculite. Almost 100% of the infected seedlings could produce transgenic positive roots 16 days post-inoculation in 7 tested genotypes. Importantly, the transgenic hairy roots in each composite plant are about three times more than those of the traditional ARM transformation, indicating that the one-step method is simpler in operation and higher efficiency in transformation. The reliability of the one-step method was verified by CRISPR/Cas9 system to knockout the soybean Rfg1, which restricts nodulation in Williams 82 (Nod-) by Sinorhizobium fredii USDA193. Furthermore, we applied this method to analyze the function of Arabidopsis YAO promoter in soybean. The activity of YAO promoter was detected in whole roots and stronger in the root tips. We also extended the protocol to tomato. CONCLUSIONS: We established a one-step ARM transformation method, which is more convenient in operation and higher efficiency (almost 100%) in transformation for generating composite soybean plants. This method has been validated in promoter functional analysis and rhizobia-legume interactions. We anticipate a broad application of this method to analyze root-related events in tomato and other plant species besides soybean.


Assuntos
Agrobacterium/fisiologia , Glycine max/genética , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Rhizobium , Glycine max/microbiologia , Transformação Genética
2.
Mycopathologia ; 182(11-12): 953-965, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28681317

RESUMO

Candida albicans is one of the most virulent and opportunistic fungal strains. In the present scenario, majority metabolic imbalances and unsuccessful treatments of some severe diseases including cancer, diabetes, HIV, psoriasis are because of invasive Candida emergence. Being a beneficial integral part of human biome, its elimination is not possible. The major pathogenicity characteristics in Candida involve hyphal growth, biofilm formation, HSP90 down regulation and genetic modifications. Ras1-pka pathway initiated by HSP90 down regulation is important for hyphal growth and has been focused in the present study. The principle transcriptional factors that induce hyphal growth causing invasiveness and virulence through this pathway have been identified as Tec1 and Rfg1. In the present study, taxifolin, a naturally occurring polyphenol, has been identified as inhibitor for both the transcriptional factors in parallel.


Assuntos
Antifúngicos/farmacologia , Candida albicans/patogenicidade , Candidíase/tratamento farmacológico , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas Fúngicas/antagonistas & inibidores , Quercetina/análogos & derivados , Proteínas Repressoras/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Sítios de Ligação , Candida albicans/efeitos dos fármacos , Candidíase/microbiologia , Domínio Catalítico , Proteínas de Choque Térmico HSP90/biossíntese , Humanos , Hifas/crescimento & desenvolvimento , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Quercetina/farmacologia , Proteínas ras/antagonistas & inibidores
3.
Trends Plant Sci ; 29(1): 7-9, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37838520

RESUMO

Coordinated evolution and mutual adaptation of soybean-rhizobium-soil (SRS) are crucial for soybean distribution, but the genetic mechanism involved had remained unclear. In a recent study, Li et al. identified a natural variant of the GmRj2/Rfg1 gene that affected the ability of soybean to adapt to distinct soil types by controlling soybean-rhizobium interaction, thus unravelling the mystery of SRS compatibility.


Assuntos
Glycine max , Rhizobium , Glycine max/genética , Solo , Simbiose/genética , Microbiologia do Solo
4.
Microbiol Spectr ; 11(6): e0178923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37933972

RESUMO

IMPORTANCE: Candida albicans is a human commensal and frequent pathogen that encounters a wide range of pH stresses. The ability of C. albicans to adapt to changes in extracellular pH is crucial for its success in colonization and pathogenesis. The Rim101 pH sensing pathway is well known to govern neutral-alkaline pH responses in this pathogen. Here, we report a novel Rfg1-Bcr1 regulatory pathway that governs acidic pH responses and regulates filamentous growth in C. albicans. In addition, the Rim101-Phr1 pathway, cAMP signaling pathway, transcription factors Efg1 and Flo8, and hyphal-specific G1 cyclin Hgc1 cooperate with this regulation. Our findings provide new insights into the regulatory mechanism of acidic pH response in C. albicans.


Assuntos
Candida albicans , Fatores de Transcrição , Humanos , Candida albicans/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Transdução de Sinais , Concentração de Íons de Hidrogênio , Regulação Fúngica da Expressão Gênica , Hifas/metabolismo
5.
Folia Microbiol (Praha) ; 68(4): 571-577, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36656405

RESUMO

The pathogen Candida albicans is pleiomorphic and grows in yeast and filamentous forms but the relationship between the regulation of different filamentous forms is unclear. BRG1 encodes a DNA binding protein which is an important regulator of morphology. Mutants lacking BRG1 grow as yeast under all conditions tested and over-expressing BRG1 drives hyphal growth even in the absence of inducing signals. A number of genetic mutants in repressors of filamentation form pseudohyphae under yeast conditions and some of these mutants can form hyphae under hypha-inducing conditions. This study examines the position of BRG1 in the regulatory networks that govern filamentation by examining the effect of over-expressing BRG1 in pseudohyphal mutants.


Assuntos
Candida albicans , Proteínas Fúngicas , Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Hifas
6.
Plant Methods ; 16: 94, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32647533

RESUMO

BACKGROUND: Agrobacterium rhizogenes-mediated hairy root transformation provides a powerful tool for investigating the functions of plant genes involved in rhizobia-legume symbiosis. However, in the traditional identification methods of transgenic hairy roots based on reporter genes, an expensive chemical substrate or equipment is required. RESULTS: Here, we report a novel, low cost, and robust reporter for convenient, non-destructive, and directly visual selection of transgenic hairy roots by naked eye, which can be used in the study of rhizobia-legume symbiosis. The reporter gene AtMyb75 in Arabidopsis, encoding an R2R3 type MYB transcription factor, was ectopically expressed in hairy roots-mediated by A. rhizogenes, which induced purple/red colored anthocyanin accumulation in crop species like soybean (Glycine max (L.) Merr.) and two model legume species, Lotus japonicas and Medicago truncatula. Transgenic hairy roots of legumes containing anthocyanin can establish effective symbiosis with rhizobia. We also demonstrated the reliability of AtMyb75 as a reporter gene by CRISPR/Cas9-targeted mutagenesis of the soybean resistance to nodulation Rfg1 gene in the soybean PI377578 (Nod-) inoculated with Sinorhizobium fredii USDA193. Without exception, mature nitrogen-fixation nodules, were formed on purple transgenic hairy roots containing anthocyanin. CONCLUSIONS: Anthocyanin is a reliable, user-friendly, convenient, non-destructive, low cost, directly visual reporter for studying symbiotic nitrogen-fixing nodule development and could be widely applied in broad leguminous plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA