Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 30(1): 89-98, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37914399

RESUMO

The eukaryotic THO complex coordinates the assembly of so-called messenger RNA-ribonucleoprotein particles (mRNPs), a process that involves cotranscriptional coating of nascent mRNAs with proteins. Once formed, mRNPs undergo a quality control step that marks them either for active transport to the cytoplasm, or Rrp6/RNA exosome-mediated degradation in the nucleus. However, the mechanism behind the quality control of nascent mRNPs is still unclear. We investigated the cotranscriptional quality control of mRNPs in budding yeast by expressing the bacterial Rho helicase, which globally perturbs yeast mRNP formation. We examined the genome-wide binding profiles of the THO complex subunits Tho2, Thp2, Hpr1, and Mft1 upon perturbation of the mRNP biogenesis, and found that Tho2 plays two roles. In addition to its function as a subunit of the THO complex, upon perturbation of mRNP biogenesis Tho2 targets Rrp6 to chromatin via its carboxy-terminal domain. Interestingly, other THO subunits are not enriched on chromatin upon perturbation of mRNP biogenesis and are not necessary for localizing Rrp6 at its target loci. Our study highlights the potential role of Tho2 in cotranscriptional mRNP quality control, which is independent of other THO subunits. Considering that both the THO complex and the RNA exosome are evolutionarily highly conserved, our findings are likely relevant for mRNP surveillance in mammals.


Assuntos
Cromatina , Proteínas de Saccharomyces cerevisiae , Cromatina/genética , Cromatina/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Yeast ; 41(10): 629-640, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39345013

RESUMO

Saccharomyces cerevisiae is an excellent model to study the effect of external cues on cell division and stress response. 5-Fluorocuracil (5-FU) has been used to treat solid tumors since several decades. The drug was initially designed to interfere with DNA replication but was later found to exert its antiproliferative effect also via RNA-dependent processes. Since 5-FU inhibits the activity of the 3'-5'-exoribonuclease Rrp6 in yeast and mammals, earlier work has compared the effect of 5-FU treatment and RRP6 deletion at the transcriptome level in diploid synchronized yeast cells. To facilitate interpreting the expression data we have developed an improved 5-Fluorouracil RNA (5-FUR) expression viewer. Users can access information via genome coordinates and systematic or standard names for mRNAs and Xrn1-dependent-, stable-, cryptic-, and meiotic unannotated transcripts (XUTs, SUTs, CUTs, and MUTs). Normalized log2-transformed or linear data can be displayed as filled diagrams, line graphs or color-coded heatmaps. The expression data are useful for researchers interested in processes such as cell cycle regulation, mitotic repression of meiotic genes, the effect of 5-FU treatment and Rrp6 deficiency on the transcriptome and expression profiles of sense/antisense loci that encode overlapping transcripts. The viewer is accessible at http://5fur.genouest.org.


Assuntos
Fluoruracila , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fluoruracila/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Deleção de Genes , Transcriptoma , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Perfilação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
RNA ; 24(12): 1677-1692, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30266864

RESUMO

Pre-rRNA processing generates mature 18S, 5.8S, and 28S/25S rRNAs through multistage removal of surrounding 5'-ETS/3'-ETS and intervening ITS1/ITS2 segments. Endonucleolytic activities release by-products, which need to be eliminated. Here, we investigated the interplay of exosome-associated 3'-5' exonucleases DIS3 and RRP6 in rRNA processing and by-product elimination in human cells. In agreement with previous reports, we observed accumulation of 5.8S and 18S precursors upon dysfunction of these enzymes. However, none of these phenotypes was so pronounced as previously overlooked accumulation of short RNA species derived from 5'-ETS (01/A'-A0), in cells with nonfunctional DIS3. We demonstrate that removal of 01/A'-A0 is independent of the XRN2 5'-3' exonucleolytic activity. Instead, it proceeds rapidly after A0 cleavage and occurs exclusively in the 3'-5' direction in several phases-following initiation by an unknown nuclease, the decay is executed by RRP6 with some contribution of DIS3, whereas the ultimate phase involves predominantly DIS3. Our data shed new light onto the role of human exosome in 5'-ETS removal. Furthermore, although 01/A'-A0 degradation involves the action of two nucleases associated with the exosome ring, similarly to 5.8S 3'-end maturation, it is likely that contrary to the latter process, RRP6 acts prior to or redundantly with DIS3.


Assuntos
Exorribonucleases/química , Complexo Multienzimático de Ribonucleases do Exossomo/química , Precursores de RNA/química , Processamento Pós-Transcricional do RNA/genética , Núcleo Celular/química , Núcleo Celular/genética , Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Exossomos/química , Exossomos/enzimologia , Humanos , Precursores de RNA/genética , Ribonucleases/química , Ribonucleases/genética
4.
RNA ; 22(9): 1311-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27402898

RESUMO

The RNA exosome is a conserved complex for RNA degradation with two ribonucleolytic subunits, Dis3 and Rrp6. Rrp6 is a 3'-5' exonuclease, but it also has a structural role in helping target RNAs to the Dis3 activity. The relative importance of the exonuclease activity and the targeting activity probably differs between different RNA substrates, but this is poorly understood. To understand the relative contributions of the exonuclease and the targeting activities to the degradation of individual RNA substrates in Schizosaccharomyces pombe, we compared RNA levels in an rrp6 null mutant to those in an rrp6 point mutant specifically defective in exonuclease activity. A wide range of effects was found, with some RNAs dependent mainly on the structural role of Rrp6 ("protein-dependent" targets), other RNAs dependent mainly on the catalytic role ("activity-dependent" targets), and some RNAs dependent on both. Some protein-dependent RNAs contained motifs targeted via the RNA-binding protein Mmi1, while others contained a motif possibly involved in response to iron. In these and other cases Rrp6 may act as a structural adapter to target specific RNAs to the exosome by interacting with sequence-specific RNA-binding proteins.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/genética , Exossomos/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , Ribonucleases/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Ligação Proteica , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
5.
J Cell Sci ; 128(6): 1097-107, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25632158

RESUMO

The exosome acts on different RNA substrates and plays important roles in RNA metabolism. The fact that short non-coding RNAs are involved in the DNA damage response led us to investigate whether the exosome factor RRP6 of Drosophila melanogaster and its human ortholog EXOSC10 play a role in DNA repair. Here, we show that RRP6 and EXOSC10 are recruited to DNA double-strand breaks (DSBs) in S2 cells and HeLa cells, respectively. Depletion of RRP6/EXOSC10 does not interfere with the phosphorylation of the histone variant H2Av (Drosophila) or H2AX (humans), but impairs the recruitment of the homologous recombination factor RAD51 to the damaged sites, without affecting RAD51 levels. The recruitment of RAD51 to DSBs in S2 cells is also inhibited by overexpression of RRP6-Y361A-V5, a catalytically inactive RRP6 mutant. Furthermore, cells depleted of RRP6 or EXOSC10 are more sensitive to radiation, which is consistent with RRP6/EXOSC10 playing a role in DNA repair. RRP6/EXOSC10 can be co-immunoprecipitated with RAD51, which links RRP6/EXOSC10 to the homologous recombination pathway. Taken together, our results suggest that the ribonucleolytic activity of RRP6/EXOSC10 is required for the recruitment of RAD51 to DSBs.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Recombinação Homóloga/genética , Animais , Western Blotting , Proliferação de Células , Imunoprecipitação da Cromatina , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Exorribonucleases/antagonistas & inibidores , Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/antagonistas & inibidores , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Células HeLa , Histonas/metabolismo , Humanos , Fosforilação , RNA Interferente Pequeno/genética , Rad51 Recombinase/metabolismo
6.
EMBO Rep ; 16(2): 221-31, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25527408

RESUMO

Eukaryotic cells respond to DNA double-strand breaks (DSBs) by activating a checkpoint that depends on the protein kinases Tel1/ATM and Mec1/ATR. Mec1/ATR is activated by RPA-coated single-stranded DNA (ssDNA), which arises upon nucleolytic degradation (resection) of the DSB. Emerging evidences indicate that RNA-processing factors play critical, yet poorly understood, roles in genomic stability. Here, we provide evidence that the Saccharomyces cerevisiae RNA decay factors Xrn1, Rrp6 and Trf4 regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA. The lack of Xrn1 inhibits ssDNA generation at the DSB by preventing the loading of the MRX complex. By contrast, DSB resection is not affected in the absence of Rrp6 or Trf4, but their lack impairs the recruitment of RPA, and therefore of Mec1, to the DSB. Rrp6 and Trf4 inactivation affects neither Rad51/Rad52 association nor DSB repair by homologous recombination (HR), suggesting that full Mec1 activation requires higher amount of RPA-coated ssDNA than HR-mediated repair. Noteworthy, deep transcriptome analyses do not identify common misregulated gene expression that could explain the observed phenotypes. Our results provide a novel link between RNA processing and genome stability.


Assuntos
DNA de Cadeia Simples/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Reparo do DNA/fisiologia , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Plant J ; 83(6): 991-1004, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26216451

RESUMO

The biosynthesis of ribosomal RNA and its incorporation into functional ribosomes is an essential and intricate process that includes production of mature ribosomal RNA from large precursors. Here, we analyse the contribution of the plant exosome and its co-factors to processing and degradation of 18S pre-RNAs in Arabidopsis thaliana. Our data show that, unlike in yeast and humans, an RRP6 homologue, the nucleolar exoribonuclease RRP6L2, and the exosome complex, together with RRP44, function in two distinct steps of pre-18S rRNA processing or degradation in Arabidopsis. In addition, we identify TRL (TRF4/5-like) as the terminal nucleotidyltransferase that is mainly responsible for oligoadenylation of rRNA precursors in Arabidopsis. We show that TRL is required for efficient elimination of the excised 5' external transcribed spacer and of 18S maturation intermediates that escaped 5' processing. Our data also suggest involvement of additional nucleotidyltransferases, including terminal uridylyltransferase(s), in modifying rRNA processing intermediates in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Nucleotidiltransferases/metabolismo , Precursores de RNA/metabolismo , RNA Ribossômico 18S/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/genética , Filogenia , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , RNA Ribossômico 18S/genética
8.
BMC Genomics ; 17: 305, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27113450

RESUMO

BACKGROUND: Cryptic unstable transcripts (CUTs) are a largely unexplored class of nuclear exosome degraded, non-coding RNAs in budding yeast. It is highly debated whether CUT transcription has a functional role in the cell or whether CUTs represent noise in the yeast transcriptome. We sought to ascertain the extent of conserved CUT expression across a variety of Saccharomyces yeast strains to further understand and characterize the nature of CUT expression. RESULTS: We sequenced the WT and rrp6Δ transcriptomes of three S.cerevisiae strains: S288c, Σ1278b, JAY291 and the S.paradoxus strain N17 and utilized a hidden Markov model to annotate CUTs in these four strains. Utilizing a four-way genomic alignment we identified a large population of CUTs with conserved syntenic expression across all four strains. By identifying configurations of gene-CUT pairs, where CUT expression originates from the gene 5' or 3' nucleosome free region, we observed distinct gene expression trends specific to these configurations which were most prevalent in the presence of conserved CUT expression. Divergent pairs correlate with higher expression of genes, and convergent pairs correlate with reduced gene expression. CONCLUSIONS: Our RNA-seq based method has greatly expanded upon previous CUT annotations in S.cerevisiae underscoring the extensive and pervasive nature of unstable transcription. Furthermore we provide the first assessment of conserved CUT expression in yeast and globally demonstrate possible modes of CUT-based regulation of gene expression.


Assuntos
Regulação Fúngica da Expressão Gênica , Estabilidade de RNA , RNA não Traduzido/genética , Saccharomyces/genética , Exossomos/genética , Genoma Fúngico , Cadeias de Markov , Nucleossomos/genética , RNA Fúngico/genética , Saccharomyces/classificação , Análise de Sequência de RNA , Sintenia , Transcriptoma
9.
FEMS Yeast Res ; 16(7)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27694155

RESUMO

In Saccharomyces cerevisiae, nuclear exosome along with TRAMP and DRN selectively eliminates diverse aberrant messages. These decay apparatuses appear to operate as independent mechanisms in the nucleus. Here, using genetic and molecular approach we systematically investigate the functional relationship between exosome, TRAMP and DRN mechanisms by examining their relative contributions in the degradation of diverse classes of aberrant nuclear mRNAs generated at various phases of mRNP biogenesis. Our findings suggest that nuclear exosome in association with the TRAMP complex exclusively degrades the transcription assembly-defective mRNPs and splice-defective intron-containing pre-mRNAs, whereas nuclear exosome along with DRN solely degrades the export-defective messages. The degradation of aberrant read-through transcripts with 3'-extensions, in contrast, requires the activity of TRAMP and DRN together along with nuclear exosome function. Thus, the profile of substrate specificity of these nuclear decay machines reflects dependency of the nuclear exosome for either TRAMP or DRN function to degrade distinct nuclear mRNAs. We propose that DRN apparatus may act as a novel ancillary factor required for the nuclear exosome function to degrade specific classes of aberrant messages.


Assuntos
Complexos Multienzimáticos/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Exossomos/metabolismo
10.
RNA Biol ; 13(4): 455-65, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26918764

RESUMO

Pat1 is a key cytoplasmic mRNA degradation factor, the loss of which severely increases mRNA half-lives. Several recent studies have shown that Pat1 can enter the nucleus and can shuttle between the nucleus and the cytoplasm. As a result, many nuclear roles have been proposed for Pat1. In this study, we analyzed four previously suggested nuclear roles of Pat1 and show that Pat1 is not required for efficient pre-mRNA splicing or pre-mRNA decay in yeast. However, lack of Pat1 results in accumulation of pre-rRNA processing intermediates. Intriguingly, we identified a novel genetic relationship between Pat1 and the rRNA decay machinery, specifically the exosome and the TRAMP complex. While the pre-rRNA processing intermediates that accumulate in the pat1 deletion mutant are, at least to some extent, recognized as aberrant by the rRNA degradation machinery, it is unlikely that these accumulations are the cause of their synthetic sick relationship. Here, we show that the dysregulation of the levels of mRNAs related to ribosome biogenesis could be the cause of the accumulation of the pre-rRNA processing intermediates. Although our results support a role for Pat1 in transcription, they nevertheless suggest that the primary cause of the dysregulated mRNA levels is most likely due to Pat1's role in mRNA decapping and mRNA degradation.


Assuntos
Citoplasma/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , Hidrólise
11.
FEMS Yeast Res ; 14(6): 922-32, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25041160

RESUMO

Messenger RNAs retained in the nucleus of Saccharomyces cerevisiae are subjected to a degradation system designated DRN (Degradation of mRNA in the Nucleus) that is dependent on the nuclear mRNA cap-binding protein, Cbc1p, as well as nuclear exosome component Rrp6p, a 3' to 5' exoribonuclease. DRN has been shown to act on RNAs preferentially retained in the nucleus, such as: (1) global mRNAs in export defective nup116-Δ mutant strains at the restrictive temperature; (2) a certain class of normal mRNAs called special mRNAs (e.g. IMP3 and YLR194c mRNAs); and (3) mutant mRNAs for example, lys2-187 and cyc1-512. In this study, we further identify three novel components of DRN (Cbc2p, Upf3p and Tif4631p) by employing a genetic screen and by considering proteins/factors that interact with Cbc1p. Participation of these components in DRN was confirmed by demonstrating that null alleles of these genes resulted in stabilization of the rapid decay of global mRNAs in the export defective nup116-Δ strain and of representative special mRNAs. Depletion of Tif4632p, an isoform of Tif4631p, also exhibited a partial impairment of DRN function and is therefore also considered to play a functional role in DRN. These findings clearly establish that CBC2, UPF3, and TIF4631/32 gene products participate in DRN function.


Assuntos
Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Núcleo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Genótipo , Mutação , Ligação Proteica , Isoformas de Proteínas
12.
RNA Biol ; 11(7): 793-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25144332

RESUMO

Long non-coding RNAs (lncRNAs) can be important regulators of various biological processes such as RNA-directed DNA methylation (RdDM). In the RdDM pathway, recruitment of the DNA methylation complex is mediated through complementary pairing between scaffold RNAs and Argonaute-associated siRNAs. Scaffold RNAs are chromatin-associated lncRNAs transcribed by RNA polymerase Pol V or Pol II, while siRNAs originate from Pol IV- or Pol II-dependent production of lncRNAs. In contrast to the vast literature on co-transcriptional and post-transcriptional processing of mRNAs, information is limited for lncRNA regulation that enables their production and function. Recently Arabidopsis RRP6L1, a plant paralog of the conserved nuclear RNA surveillance protein Rrp6, was shown to mediate RdDM through retention of lncRNAs in the chromatin, thereby revealing that accumulation of functional lncRNAs requires more than simply RNA polymerases. By focusing on the canonical RdDM pathway, here we summarize recent evidence that indicate co-transcriptional and/or post-transcriptional regulation of lncRNAs, and highlight the emerging theme of lncRNA regulation by RNA processing factors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , RNA Longo não Codificante/genética , RNA de Plantas/genética , Arabidopsis/genética , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , RNA Interferente Pequeno/metabolismo
13.
FEBS J ; 291(5): 897-926, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37994298

RESUMO

In Saccharomyces cerevisiae, the CBC-Tif4631p-dependent exosomal targeting (CTEXT) complex consisting of Cbc1/2p, Tif4631p and Upf3p promotes the exosomal degradation of aberrantly long 3'-extended, export-defective transcripts and a small group of normal (termed 'special') mRNAs. We carried out a systematic analysis of all previously characterized functional domains of the major CTEXT component Tif4631p by deleting each of them and interrogating their involvement in the nuclear surveillance of abnormally long 3'-extended and export-defective messages. Our analyses show that the N-terminal RNA recognition motif 1 (RRM1) and poly(A)-binding protein (PAB) domains of Tif4631p, spanning amino acid residues, 1-82 and 188-299 in its primary structure, respectively, play a crucial role in degrading these aberrant messages. Furthermore, the physical association of the nuclear exosome with the altered/variant CTEXT complex harboring any of the mutant Tif4631p proteins lacking either the RRM1 or PAB domain becomes abolished. This finding indicates that the association between CTEXT and the exosome is accomplished via interaction between these Tif4631p domains with the major exosome component, Rrp6p. Abolition of interaction between altered CTEXT (harboring any of the RRM1/PAB-deleted versions of Tif4631p) and the exosome further leads to the impaired recruitment of the RNA targets to the Rrp6p subunit of the exosome carried out by the RRM1/PAB domains of Tif4631p. When analyzing the Tif4631p-interacting proteins, we identified a DEAD-box RNA helicase (Dbp2p), as an interacting partner that turned out to be a previously unknown component of CTEXT. The present study provides a more complete description of the CTEXT complex and offers insight into the functional relationship of this complex with the nuclear exosome.


Assuntos
Motivo de Reconhecimento de RNA , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo
14.
Microb Cell ; 11: 155-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783922

RESUMO

In Saccharomyces cerevisiae, polyadenylated forms of mature (and not precursor) small non-coding RNAs (sncRNAs) those fail to undergo proper 3'-end maturation are subject to an active degradation by Rrp6p and Rrp47p, which does not require the involvement of core exosome and TRAMP components. In agreement with this finding, Rrp6p/Rrp47p is demonstrated to exist as an exosome-independent complex, which preferentially associates with mature polyadenylated forms of these sncRNAs. Consistent with this observation, a C-terminally truncated version of Rrp6p (Rrp6p-ΔC2) lacking physical association with the core nuclear exosome supports their decay just like its full-length version. Polyadenylation is catalyzed by both the canonical and non-canonical poly(A) polymerases, Pap1p and Trf4p. Analysis of the polyadenylation profiles in WT and rrp6-Δ strains revealed that the majority of the polyadenylation sites correspond to either one to three nucleotides upstream or downstream of their mature ends and their poly(A) tails ranges from 10-15 adenylate residues. Most interestingly, the accumulated polyadenylated snRNAs are functional in the rrp6-Δ strain and are assembled into spliceosomes. Thus, Rrp6p-Rrp47p defines a core nuclear exosome-independent novel RNA turnover system in baker's yeast targeting imperfectly processed polyadenylated sncRNAs that accumulate in the absence of Rrp6p.

15.
Mol Cell Biol ; 43(8): 371-400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533322

RESUMO

Induction of unfolded protein response involves activation of transcription factor Hac1p that is encoded by HAC1 pre-mRNA harboring an intron and a bipartite element (BE), which is subjected to nuclear mRNA decay by the nuclear exosome/Cbc1p-Tif4631p-dependent Exosome Targeting (CTEXT) complex. Using a combination of genetic and biochemical approaches, we demonstrate that a Rab-GTPase Ypt1p controls unfolded protein response signaling dynamics. This regulation relies on the nuclear localization of a small fraction of the cellular Ypt1p pool in the absence of endoplasmic reticulum (ER)-stress causing a strong association of the nuclear Ypt1p with pre-HAC1 mRNA that eventually promotes sequential recruitments of NNS, CTEXT, and the nuclear exosome onto this pre-mRNA. Recruitment of these decay factors onto pre-HAC1 mRNA is accompanied by its rapid nuclear decay that produces a precursor RNA pool lacking functional BE thereby causing its inefficient targeting to Ire1p foci leading to their diminished splicing and translation. ER stress triggers rapid relocalization of the nuclear pool of Ypt1p to the cytoplasm leading to its dissociation from pre-HAC1 mRNA thereby causing decreased recruitment of these decay factors to precursor HAC1 RNA leading to its diminished degradation. Reduced decay results in an increased abundance of pre-HAC1 mRNA with intact functional BE leading to its enhanced recruitment to Ire1p foci.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Repressoras/metabolismo , Precursores de RNA/genética , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas
16.
Microbiol Spectr ; 9(1): e0029521, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34259554

RESUMO

Yeast cell wall stability is important for cell division and survival under stress conditions. The expression of cell-wall-related proteins is regulated by several pathways involving RNA-binding proteins and RNases. The multiprotein RNA exosome complex provides the 3'→5' exoribonuclease activity that is critical for maintaining the stability and integrity of the yeast cell wall under stress conditions such as high temperatures. In this work, we show that the temperature sensitivity of RNA exosome mutants is most pronounced in the W303 genetic background due to the nonfunctional ssd1-d allele. This gene encodes the RNA-binding protein Ssd1, which is involved in the posttranscriptional regulation of cell-wall-related genes. Expression of the functional SSD1-V allele from its native genomic locus or from a centromeric plasmid suppresses the growth defects and aberrant morphology of RNA exosome mutant cells at high temperatures or upon treatment with cell wall stressors. Moreover, combined inactivation of the RNA exosome catalytic subunit Rrp6 and Ssd1 results in a synthetically sick phenotype of cell wall instability, as these proteins may function in parallel pathways (i.e., via different mRNA targets) to maintain cell wall stability. IMPORTANCE Stressful conditions such as high temperatures can compromise cellular integrity and cause bursting. In microorganisms surrounded by a cell wall, such as yeast, the cell wall is the primary shield that protects cells from environmental stress. Therefore, remodeling its structure requires inputs from multiple signaling pathways and regulators. In this work, we identify the interplay of the RNA exosome complex and the RNA-binding protein Ssd1 as an important factor in the yeast cell wall stress response. These proteins operate in independent pathways to support yeast cell wall stability. This work highlights the contribution of RNA-binding proteins in the regulation of yeast cell wall structure, providing new insights into yeast physiology.


Assuntos
Parede Celular/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Parede Celular/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Exossomos/genética , Exossomos/metabolismo , RNA Fúngico/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Biol Rev Camb Philos Soc ; 96(4): 1092-1113, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33599082

RESUMO

The conserved 3'-5' exoribonuclease EXOSC10/Rrp6 processes and degrades RNA, regulates gene expression and participates in DNA double-strand break repair and control of telomere maintenance via degradation of the telomerase RNA component. EXOSC10/Rrp6 is part of the multimeric nuclear RNA exosome and interacts with numerous proteins. Previous clinical, genetic, biochemical and genomic studies revealed the protein's essential functions in cell division and differentiation, its RNA substrates and its relevance to autoimmune disorders and oncology. However, little is known about the regulatory mechanisms that control the transcription, translation and stability of EXOSC10/Rrp6 during cell growth, development and disease and how these mechanisms evolved from yeast to human. Herein, we provide an overview of the RNA- and protein expression profiles of EXOSC10/Rrp6 during cell division, development and nutritional stress, and we summarize interaction networks and post-translational modifications across species. Additionally, we discuss how known and predicted protein interactions and post-translational modifications influence the stability of EXOSC10/Rrp6. Finally, we explore the idea that different EXOSC10/Rrp6 alleles, which potentially alter cellular protein levels or affect protein function, might influence human development and disease progression. In this review we interpret information from the literature together with genomic data from knowledgebases to inspire future work on the regulation of this essential protein's stability in normal and malignant cells.


Assuntos
Neoplasias , Proteínas de Saccharomyces cerevisiae , Divisão Celular , Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Humanos , Neoplasias/genética , Saccharomyces cerevisiae
18.
Biosci Trends ; 14(4): 255-262, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32350160

RESUMO

Salmonella enterica serovar Typhimurium (Salmonella), a pathogenic bacterium, is a major cause of foodborne diseases worldwide. Salmonella injects multiple virulence factors, called effectors, into cells and causes multiple rearrangements of cellular biological reactions that are important for Salmonella proliferation and virulence. Previously, we reported that Salmonella infection causes loss of MTR4 and RRP6, which are nuclear RNA degradation factors, resulting in the stabilization and accumulation of unstable nuclear RNAs. This accumulation is important for the cellular defense for Salmonella infection. In this study, we examined a series of Salmonella mutant strains, most of which are strains with genes related to effectors translocated by T3SSs encoded on Salmonella pathogenic islands, SPI-1 and SPI-2, that have been depleted. Among 42 Salmonella mutants, 6 mutants' infections canceled loss of MTR4 and RRP6. Proliferation assay of Salmonella in the cell revealed that six mutants showed poor proliferation in the host cell, demonstrating that poor proliferation contributed to cancellation of MTR4 and RRP6 loss. This result indicates that certain events associated with Salmonella proliferation in host cells cause loss of MTR4 and RRP6.


Assuntos
Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , RNA Helicases/metabolismo , Intoxicação Alimentar por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteólise , RNA Bacteriano/metabolismo , RNA Nuclear/metabolismo , Salmonella typhimurium/genética , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Virulência/genética , Fatores de Virulência/metabolismo
19.
Cell Rep ; 30(8): 2686-2698.e8, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32101745

RESUMO

Heterochromatin functions as a scaffold for factors responsible for gene silencing and chromosome segregation. Heterochromatin can be assembled by multiple pathways, including RNAi and RNA surveillance. We identified factors that form heterochromatin using dense profiles of transposable element integration in Schizosaccharomyces pombe. The candidates include a large number of essential proteins such as four canonical mRNA cleavage and polyadenylation factors. We find that Iss1, a subunit of the poly(A) polymerase module, plays a role in forming heterochromatin in centromere repeats that is independent of RNAi. Genome-wide maps reveal that Iss1 accumulates at genes regulated by RNA surveillance. Iss1 interacts with RNA surveillance factors Mmi1 and Rrp6, and importantly, Iss1 contributes to RNA elimination that forms heterochromatin at meiosis genes. Our profile of transposable element integration supports the model that a network of mRNA cleavage and polyadenylation factors coordinates RNA surveillance, including the mechanism that forms heterochromatin at meiotic genes.


Assuntos
Elementos de DNA Transponíveis/genética , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Núcleo Celular/metabolismo , Centrômero/metabolismo , Exossomos/metabolismo , Regulação Fúngica da Expressão Gênica , Meiose/genética , Interferência de RNA , Processamento Pós-Transcricional do RNA/genética , RNA Fúngico/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Schizosaccharomyces/genética
20.
Cell Rep ; 31(10): 107754, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32521279

RESUMO

The nuclear RNA exosome is essential for RNA processing and degradation. Here, we show that the exosome nuclear-specific subunit Rrp6p promotes cell survival during heat stress through the cell wall integrity (CWI) pathway, independently of its catalytic activity or association with the core exosome. Rrp6p exhibits negative genetic interactions with the Slt2/Mpk1p or Paf1p elongation factors required for expression of CWI genes during stress. Overexpression of Rrp6p or of its catalytically inactive or exosome-independent mutants can partially rescue the growth defect of the mpk1Δ mutant and stimulates expression of the Mpk1p target gene FKS2. The rrp6Δ and mpk1Δ mutants show similarities in deficient expression of CWI genes during heat shock, and overexpression of the CWI gene HSP150 can rescue the stress-induced lethality of the mpk1Δrp6Δ mutant. These results demonstrate that Rrp6p moonlights independently from the exosome to ensure proper expression of CWI genes and to promote cell survival during stress.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Sobrevivência Celular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA