Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 169(5): 824-835.e14, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525753

RESUMO

Maintenance of proper levels of the methyl donor S-adenosylmethionine (SAM) is critical for a wide variety of biological processes. We demonstrate that the N6-adenosine methyltransferase METTL16 regulates expression of human MAT2A, which encodes the SAM synthetase expressed in most cells. Upon SAM depletion by methionine starvation, cells induce MAT2A expression by enhanced splicing of a retained intron. Induction requires METTL16 and its methylation substrate, a vertebrate conserved hairpin (hp1) in the MAT2A 3' UTR. Increasing METTL16 occupancy on the MAT2A 3' UTR is sufficient to induce efficient splicing. We propose that, under SAM-limiting conditions, METTL16 occupancy on hp1 increases due to inefficient enzymatic turnover, which promotes MAT2A splicing. We further show that METTL16 is the long-unknown methyltransferase for the U6 spliceosomal small nuclear RNA (snRNA). These observations suggest that the conserved U6 snRNA methyltransferase evolved an additional function in vertebrates to regulate SAM homeostasis.


Assuntos
Íntrons , Metionina Adenosiltransferase/genética , Metiltransferases/metabolismo , Splicing de RNA , S-Adenosilmetionina/metabolismo , Animais , Sequência de Bases , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Humanos , Sequências Repetidas Invertidas , Metionina Adenosiltransferase/química , Metilação , Metiltransferases/química , Schizosaccharomyces/metabolismo
2.
Mol Cell ; 71(6): 1001-1011.e4, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30197297

RESUMO

S-adenosylmethionine (SAM) is an essential metabolite that acts as a cofactor for most methylation events in the cell. The N6-methyladenosine (m6A) methyltransferase METTL16 controls SAM homeostasis by regulating the abundance of SAM synthetase MAT2A mRNA in response to changing intracellular SAM levels. Here we present crystal structures of METTL16 in complex with MAT2A RNA hairpins to uncover critical molecular mechanisms underlying the regulated activity of METTL16. The METTL16-RNA complex structures reveal atomic details of RNA substrates that drive productive methylation by METTL16. In addition, we identify a polypeptide loop in METTL16 near the SAM binding site with an autoregulatory role. We show that mutations that enhance or repress METTL16 activity in vitro correlate with changes in MAT2A mRNA levels in cells. Thus, we demonstrate the structural basis for the specific activity of METTL16 and further suggest the molecular mechanisms by which METTL16 efficiency is tuned to regulate SAM homeostasis.


Assuntos
Metiltransferases/metabolismo , Metiltransferases/ultraestrutura , Regiões 3' não Traduzidas , Adenosina/análogos & derivados , Sítios de Ligação , Células HEK293 , Homeostase , Humanos , Metionina Adenosiltransferase/metabolismo , Metilação , Metiltransferases/fisiologia , RNA , RNA Mensageiro , RNA Nuclear Pequeno/metabolismo , S-Adenosilmetionina/metabolismo
3.
Cell Mol Life Sci ; 80(8): 205, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450052

RESUMO

Dietary intake and nutrient composition regulate animal growth and development; however, the underlying mechanisms remain elusive. Our previous study has shown that either the mammalian deafness homolog gene tmc-1 or its downstream acetylcholine receptor gene eat-2 attenuates Caenorhabditis elegans development in a chemically defined food CeMM (C. elegans maintenance medium) environment, but the underpinning mechanisms are not well-understood. Here, we found that, in CeMM food environment, for both eat-2 and tmc-1 fast-growing mutants, several fatty acid synthesis and elongation genes were highly expressed, while many fatty acid ß-oxidation genes were repressed. Accordingly, dietary supplementation of individual fatty acids, such as monomethyl branch chain fatty acid C17ISO, palmitic acid and stearic acid significantly promoted wild-type animal development on CeMM, and mutations in either C17ISO synthesis gene elo-5 or elo-6 slowed the rapid growth of eat-2 mutant. Tissue-specific rescue experiments showed that elo-6 promoted animal development mainly in the intestine. Furthermore, transcriptome and metabolome analyses revealed that elo-6/C17ISO regulation of C. elegans development may be correlated with up-regulating expression of cuticle synthetic and hedgehog signaling genes, as well as promoting biosynthesis of amino acids, amino acid derivatives and vitamins. Correspondingly, we found that amino acid derivative S-adenosylmethionine and its upstream metabolite methionine sulfoxide significantly promoted C. elegans development on CeMM. This study demonstrated that C17ISO, palmitic acid, stearic acid, S-adenosylmethionine and methionine sulfoxide inhibited or bypassed the TMC-1 and EAT-2-mediated attenuation of development via metabolic remodeling, and allowed the animals to adapt to the new nutritional niche.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Ácidos Graxos , Nutrientes , Receptores Nicotínicos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Animais , Ingestão de Alimentos , Nutrientes/metabolismo , Músculos Faríngeos/metabolismo , Ácidos Graxos/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo
4.
J Biol Chem ; 298(6): 102040, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35595101

RESUMO

The enzyme m1A22-tRNA methyltransferase (TrmK) catalyzes the transfer of a methyl group to the N1 of adenine 22 in bacterial tRNAs. TrmK is essential for Staphylococcus aureus survival during infection but has no homolog in mammals, making it a promising target for antibiotic development. Here, we characterize the structure and function of S. aureus TrmK (SaTrmK) using X-ray crystallography, binding assays, and molecular dynamics simulations. We report crystal structures for the SaTrmK apoenzyme as well as in complexes with methyl donor SAM and co-product product SAH. Isothermal titration calorimetry showed that SAM binds to the enzyme with favorable but modest enthalpic and entropic contributions, whereas SAH binding leads to an entropic penalty compensated for by a large favorable enthalpic contribution. Molecular dynamics simulations point to specific motions of the C-terminal domain being altered by SAM binding, which might have implications for tRNA recruitment. In addition, activity assays for SaTrmK-catalyzed methylation of A22 mutants of tRNALeu demonstrate that the adenine at position 22 is absolutely essential. In silico screening of compounds suggested the multifunctional organic toxin plumbagin as a potential inhibitor of TrmK, which was confirmed by activity measurements. Furthermore, LC-MS data indicated the protein was covalently modified by one equivalent of the inhibitor, and proteolytic digestion coupled with LC-MS identified Cys92 in the vicinity of the SAM-binding site as the sole residue modified. These results identify a cryptic binding pocket of SaTrmK, laying a foundation for future structure-based drug discovery.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus , tRNA Metiltransferases , Adenina , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Conformação Proteica , RNA de Transferência/metabolismo , S-Adenosilmetionina/metabolismo , Staphylococcus aureus/enzimologia , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo
5.
J Biol Chem ; 298(9): 102290, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868559

RESUMO

Protein arginine methylation is involved in many biological processes and can be enhanced in cancer. In mammals, these reactions are catalyzed on multiple substrates by a family of nine protein arginine methyltransferases (PRMTs). However, conditions that may regulate the activity of each enzyme and that may help us understand the physiological role of PRMTs have not been fully established. Previous studies had suggested unexpected effects of temperature and ionic strength on PRMT7 activity. Here we examine in detail the effects of temperature, pH, and ionic strength on recombinant human PRMT1, PRMT5, and PRMT7. We confirmed the unusual temperature dependence of PRMT7, where optimal activity was observed at 15 °C. On the other hand, we found that PRMT1 and PRMT5 are most active near physiological temperatures of 37 °C. However, we showed all three enzymes still have significant activity at 0 °C. Furthermore, we determined that PRMT1 is most active at a pH of about 7.7, while PRMT5 activity is not dependent on pH in the range of 6.5 to 8.5. Significantly, PRMT7 is most active at an alkaline pH of 8.5 but shows little activity at the physiological intracellular pH of about 7.2. We also detected decreased activity at physiological salt conditions for PRMT1, PRMT5, and PRMT7. We demonstrate that the loss of activity is due to the increasing ionic strength. Taken together, these results open the possibility that PRMTs respond in cells undergoing temperature, salt, or pH stress and demonstrate the potential for in vivo regulation of protein arginine methylation.


Assuntos
Arginina , Proteína-Arginina N-Metiltransferases , Arginina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Metilação , Concentração Osmolar , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Temperatura
6.
Biotechnol Lett ; 45(2): 255-262, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36550338

RESUMO

S-Adenosylmethionine (SAM) is a crucial small-molecule metabolite widely used in food and medicine. The development of high-throughput biosensors for SAM biosynthesis can significantly improve the titer of SAM. This paper constructed a synthetic transcription factor (TF)-based biosensor for SAM detecting in Saccharomyces cerevisiae. The synthetic TF, named MetJ-hER-VP16, consists of an Escherichia coli-derived DNA-binding domain MetJ, GS linker, the human estrogen receptor binding domain hER, and the viral activation domain VP16. The synthetic biosensor is capable of sensing SAM in a dose-dependent manner with fluorescence as the output. Additionally, it is tightly regulated by the inducer SAM and ß-estradiol, which means that the fluorescence output is only available when both are present together. The synthetic SAM biosensor could potentially be applied for high-throughput metabolic engineering and is expected to improve SAM production.


Assuntos
Técnicas Biossensoriais , S-Adenosilmetionina , Saccharomyces cerevisiae , Fatores de Transcrição , Humanos , Escherichia coli/metabolismo , Etoposídeo/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
J Biol Chem ; 295(47): 16037-16057, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32934008

RESUMO

Methylenetetrahydrofolate reductase (MTHFR) links the folate cycle to the methionine cycle in one-carbon metabolism. The enzyme is known to be allosterically inhibited by SAM for decades, but the importance of this regulatory control to one-carbon metabolism has never been adequately understood. To shed light on this issue, we exchanged selected amino acid residues in a highly conserved stretch within the regulatory region of yeast MTHFR to create a series of feedback-insensitive, deregulated mutants. These were exploited to investigate the impact of defective allosteric regulation on one-carbon metabolism. We observed a strong growth defect in the presence of methionine. Biochemical and metabolite analysis revealed that both the folate and methionine cycles were affected in these mutants, as was the transsulfuration pathway, leading also to a disruption in redox homeostasis. The major consequences, however, appeared to be in the depletion of nucleotides. 13C isotope labeling and metabolic studies revealed that the deregulated MTHFR cells undergo continuous transmethylation of homocysteine by methyltetrahydrofolate (CH3THF) to form methionine. This reaction also drives SAM formation and further depletes ATP reserves. SAM was then cycled back to methionine, leading to futile cycles of SAM synthesis and recycling and explaining the necessity for MTHFR to be regulated by SAM. The study has yielded valuable new insights into the regulation of one-carbon metabolism, and the mutants appear as powerful new tools to further dissect out the intersection of one-carbon metabolism with various pathways both in yeasts and in humans.


Assuntos
Trifosfato de Adenosina/química , Metilenotetra-Hidrofolato Redutase (NADPH2)/química , S-Adenosilmetionina/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Humanos , Metilação , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
J Biol Chem ; 295(10): 3029-3039, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31996372

RESUMO

Molybdenum cofactor (Moco) biosynthesis is a highly conserved multistep pathway. The first step, the conversion of GTP to cyclic pyranopterin monophosphate (cPMP), requires the bicistronic gene molybdenum cofactor synthesis 1 (MOCS1). Alternative splicing of MOCS1 within exons 1 and 9 produces four different N-terminal and three different C-terminal products (type I-III). Type I splicing results in bicistronic transcripts with two open reading frames, of which only the first, MOCS1A, is translated, whereas type II/III splicing produces MOCS1AB proteins. Here, we first report the cellular localization of alternatively spliced human MOCS1 proteins. Using fluorescence microscopy, fluorescence spectroscopy, and cell fractionation experiments, we found that depending on the alternative splicing of exon 1, type I splice variants (MOCS1A) either localize to the mitochondrial matrix (exon 1a) or remain cytosolic (exon 1b). MOCS1A proteins required exon 1a for mitochondrial translocation, but fluorescence microscopy of MOCS1AB variants (types II and III) revealed that they were targeted to mitochondria independently of exon 1 splicing. In the latter case, cell fractionation experiments displayed that mitochondrial matrix import was facilitated via an internal motif overriding the N-terminal targeting signal. Within mitochondria, MOCS1AB underwent proteolytic cleavage resulting in mitochondrial matrix localization of the MOCS1B domain. In conclusion, MOCS1 produces two functional proteins, MOCS1A and MOCS1B, which follow different translocation routes before mitochondrial matrix import for cPMP biosynthesis involving both proteins. MOCS1 protein maturation provides a novel alternative splicing mechanism that ensures the coordinated mitochondrial targeting of two functionally related proteins encoded by a single gene.


Assuntos
Carbono-Carbono Liases/metabolismo , Mitocôndrias/metabolismo , Processamento Alternativo , Animais , Células COS , Carbono-Carbono Liases/genética , Chlorocebus aethiops , Éxons , Humanos , Microscopia de Fluorescência , Proteínas Mitocondriais/metabolismo , Fases de Leitura Aberta/genética , Compostos Organofosforados/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pterinas/metabolismo
9.
J Biol Chem ; 295(9): 2582-2589, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31911441

RESUMO

Most characterized SET domain (SETD) proteins are protein lysine methyltransferases, but SETD3 was recently demonstrated to be a protein (i.e. actin) histidine-N3 methyltransferase. Human SETD3 shares a high structural homology with two known protein lysine methyltransferases-human SETD6 and the plant LSMT-but differs in the residues constituting the active site. In the SETD3 active site, Asn255 engages in a unique hydrogen-bonding interaction with the target histidine of actin that likely contributes to its >1300-fold greater catalytic efficiency (kcat/Km ) on histidine than on lysine. Here, we engineered active-site variants to switch the SETD3 target specificity from histidine to lysine. Substitution of Asn255 with phenylalanine (N255F), together with substitution of Trp273 with alanine (W273A), generated an active site mimicking that of known lysine methyltransferases. The doubly substituted SETD3 variant exhibited a 13-fold preference for lysine over histidine. We show, by means of X-ray crystallography, that the two target nitrogen atoms-the N3 atom of histidine and the terminal ϵ-amino nitrogen of lysine-occupy the same position and point toward and are within a short distance of the incoming methyl group of SAM for a direct methyl transfer during catalysis. In contrast, SETD3 and its Asn255 substituted derivatives did not methylate glutamine (another potentially methylated amino acid). However, the glutamine-containing peptide competed with the substrate peptide, and glutamine bound in the active site, but too far away from SAM to be methylated. Our results provide insight into the structural parameters defining the target amino acid specificity of SET enzymes.


Assuntos
Histona Metiltransferases/genética , Histona-Lisina N-Metiltransferase/metabolismo , Lisina/metabolismo , Actinas/metabolismo , Substituição de Aminoácidos , Domínio Catalítico , Histidina/metabolismo , Histona Metiltransferases/química , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Humanos , Ligação de Hidrogênio , Metilação , Engenharia de Proteínas , Especificidade por Substrato/genética
10.
J Biol Chem ; 295(32): 10901-10910, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32503840

RESUMO

Most characterized protein methylation events encompass arginine and lysine N-methylation, and only a few cases of protein methionine thiomethylation have been reported. Newly discovered oncohistone mutations include lysine-to-methionine substitutions at positions 27 and 36 of histone H3.3. In these instances, the methionine substitution localizes to the active-site pocket of the corresponding histone lysine methyltransferase, thereby inhibiting the respective transmethylation activity. SET domain-containing 3 (SETD3) is a protein (i.e. actin) histidine methyltransferase. Here, we generated an actin variant in which the histidine target of SETD3 was substituted with methionine. As for previously characterized histone SET domain proteins, the methionine substitution substantially (76-fold) increased binding affinity for SETD3 and inhibited SETD3 activity on histidine. Unexpectedly, SETD3 was active on the substituted methionine, generating S-methylmethionine in the context of actin peptide. The ternary structure of SETD3 in complex with the methionine-containing actin peptide at 1.9 Å resolution revealed that the hydrophobic thioether side chain is packed by the aromatic rings of Tyr312 and Trp273, as well as the hydrocarbon side chain of Ile310 Our results suggest that placing methionine properly in the active site-within close proximity to and in line with the incoming methyl group of SAM-would allow some SET domain proteins to selectively methylate methionine in proteins.


Assuntos
Histona Metiltransferases/metabolismo , Metionina/metabolismo , Histona Metiltransferases/química , Humanos , Metilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína
11.
J Biol Chem ; 295(52): 18390-18405, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33122193

RESUMO

Methionine, through S-adenosylmethionine, activates a multifaceted growth program in which ribosome biogenesis, carbon metabolism, and amino acid and nucleotide biosynthesis are induced. This growth program requires the activity of the Gcn4 transcription factor (called ATF4 in mammals), which facilitates the supply of metabolic precursors that are essential for anabolism. However, how Gcn4 itself is regulated in the presence of methionine is unknown. Here, we discover that Gcn4 protein levels are increased by methionine, despite conditions of high cell growth and translation (in which the roles of Gcn4 are not well-studied). We demonstrate that this mechanism of Gcn4 induction is independent of transcription, as well as the conventional Gcn2/eIF2α-mediated increased translation of Gcn4. Instead, when methionine is abundant, Gcn4 phosphorylation is decreased, which reduces its ubiquitination and therefore degradation. Gcn4 is dephosphorylated by the protein phosphatase 2A (PP2A); our data show that when methionine is abundant, the conserved methyltransferase Ppm1 methylates and alters the activity of the catalytic subunit of PP2A, shifting the balance of Gcn4 toward a dephosphorylated, stable state. The absence of Ppm1 or the loss of the PP2A methylation destabilizes Gcn4 even when methionine is abundant, leading to collapse of the Gcn4-dependent anabolic program. These findings reveal a novel, methionine-dependent signaling and regulatory axis. Here methionine directs the conserved methyltransferase Ppm1 via its target phosphatase PP2A to selectively stabilize Gcn4. Through this, cells conditionally modify a major phosphatase to stabilize a metabolic master regulator and drive anabolism.


Assuntos
Anabolizantes/isolamento & purificação , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteína Fosfatase 2/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Metilação , Fosforilação , Biossíntese de Proteínas , Proteína Fosfatase 2/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
12.
J Biol Chem ; 295(8): 2473-2482, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31932304

RESUMO

Phospholipid N-methyltransferases (PLMTs) synthesize phosphatidylcholine by methylating phosphatidylethanolamine using S-adenosylmethionine as a methyl donor. Eukaryotic PLMTs are integral membrane enzymes located in the endoplasmic reticulum (ER). Recently Opi3, a PLMT of the yeast Saccharomyces cerevisiae was proposed to perform in trans catalysis, i.e. while localized in the ER, Opi3 would methylate lipid substrates located in the plasma membrane at membrane contact sites. Here, we tested whether the Opi3 active site is located at the cytosolic side of the ER membrane, which is a prerequisite for in trans catalysis. The membrane topology of Opi3 (and its human counterpart, phosphatidylethanolamine N-methyltransferase, expressed in yeast) was addressed by topology prediction algorithms and by the substituted cysteine accessibility method. The results of these analyses indicated that Opi3 (as well as phosphatidylethanolamine N-methyltransferase) has an N-out C-in topology and contains four transmembrane domains, with the fourth forming a re-entrant loop. On the basis of the sequence conservation between the C-terminal half of Opi3 and isoprenyl cysteine carboxyl methyltransferases with a solved crystal structure, we identified amino acids critical for Opi3 activity by site-directed mutagenesis. Modeling of the structure of the C-terminal part of Opi3 was consistent with the topology obtained by the substituted cysteine accessibility method and revealed that the active site faces the cytosol. In conclusion, the location of the Opi3 active site identified here is consistent with the proposed mechanism of in trans catalysis, as well as with conventional catalysis in cis.


Assuntos
Biocatálise , Retículo Endoplasmático/metabolismo , Fosfatidil-N-Metiletanolamina N-Metiltransferase/química , Fosfatidil-N-Metiletanolamina N-Metiltransferase/metabolismo , Fosfatidiletanolamina N-Metiltransferase/química , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Simulação por Computador , Humanos , Modelos Biológicos , Mutação/genética , Fosfatidil-N-Metiletanolamina N-Metiltransferase/genética , Fosfatidiletanolamina N-Metiltransferase/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
J Biol Chem ; 295(31): 10522-10534, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32503839

RESUMO

Vitamin B12 and other cobamides are essential cofactors required by many organisms and are synthesized by a subset of prokaryotes via distinct aerobic and anaerobic routes. The anaerobic biosynthesis of 5,6-dimethylbenzimidazole (DMB), the lower ligand of vitamin B12, involves five reactions catalyzed by the bza operon gene products, namely the hydroxybenzimidazole synthase BzaAB/BzaF, phosphoribosyltransferase CobT, and three methyltransferases, BzaC, BzaD, and BzaE, that conduct three distinct methylation steps. Of these, the methyltransferases that contribute to benzimidazole lower ligand diversity in cobamides remain to be characterized, and the precise role of the bza operon protein CobT is unclear. In this study, we used the bza operon from the anaerobic bacterium Moorella thermoacetica (comprising bzaA-bzaB-cobT-bzaC) to examine the role of CobT and investigate the activity of the first methyltransferase, BzaC. We studied the phosphoribosylation catalyzed by MtCobT and found that it regiospecifically activates 5-hydroxybenzimidazole (5-OHBza) to form the 5-OHBza-ribotide (5-OHBza-RP) isomer as the sole product. Next, we characterized the domains of MtBzaC and reconstituted its methyltransferase activity with the predicted substrate 5-OHBza and with two alternative substrates, the MtCobT product 5-OHBza-RP and its riboside derivative 5-OHBza-R. Unexpectedly, we found that 5-OHBza-R is the most favored MtBzaC substrate. Our results collectively explain the long-standing observation that the attachment of the lower ligand in anaerobic cobamide biosynthesis is regiospecific. In conclusion, we validate MtBzaC as a SAM:hydroxybenzimidazole-riboside methyltransferase (HBIR-OMT). Finally, we propose a new pathway for the synthesis and activation of the benzimidazolyl lower ligand in anaerobic cobamide biosynthesis.


Assuntos
Proteínas de Bactérias/metabolismo , Benzimidazóis/metabolismo , Cobamidas/biossíntese , Metiltransferases/metabolismo , Moorella/metabolismo , Pentosiltransferases/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Cobamidas/genética , Metilação , Metiltransferases/genética , Moorella/genética , Pentosiltransferases/genética
14.
J Biol Chem ; 295(20): 6849-6860, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32209653

RESUMO

There are a number of riboswitches that utilize the same ligand-binding domain to regulate transcription or translation. S-box (SAM-I) riboswitches, including the riboswitch present in the Bacillus subtilis metI gene, which encodes cystathionine γ-synthase, regulate the expression of genes involved in methionine metabolism in response to SAM, primarily at the level of transcriptional attenuation. A rarer class of S-box riboswitches is predicted to regulate translation initiation. Here we identified and characterized a translational S-box riboswitch in the metI gene from Desulfurispirillum indicum The regulatory mechanisms of riboswitches are influenced by the kinetics of ligand interaction. The half-life of the translational D. indicum metI RNA-SAM complex is significantly shorter than that of the transcriptional B. subtilis metI RNA. This finding suggests that, unlike the transcriptional RNA, the translational metI riboswitch can make multiple reversible regulatory decisions. Comparison of both RNAs revealed that the second internal loop of helix P3 in the transcriptional RNA usually contains an A residue, whereas the translational RNA contains a C residue that is conserved in other S-box RNAs that are predicted to regulate translation. Mutational analysis indicated that the presence of an A or C residue correlates with RNA-SAM complex stability. Biochemical analyses indicate that the internal loop sequence critically determines the stability of the RNA-SAM complex by influencing the flexibility of residues involved in SAM binding and thereby affects the molecular mechanism of riboswitch function.


Assuntos
Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , RNA Bacteriano/metabolismo , Transcrição Gênica , Bactérias/genética , Clostridium/genética , Clostridium/metabolismo , Ligantes , RNA Bacteriano/genética , Riboswitch
15.
J Biol Chem ; 294(31): 11726-11727, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375551

RESUMO

Radical S-adenosylmethionine (SAM) (RS) methylases perform methylation reactions at unactivated carbon and phosphorus atoms. RS enzymes typically abstract a hydrogen from their substrates, generating a substrate-centered radical; class B RS methylases catalyze methyl transfer from SAM to cobalamin and then to a substrate-centered carbon or phosphorus radical. Radle et al. now show that Mmp10, an RS enzyme implicated in the methylation of Arg-285 in methyl coenzyme M reductase, binds a methylcobalamin cofactor required for methyl transfer from SAM to a peptide substrate. However, Mmp10 has little sequence homology to known methylases, suggesting this enzyme belongs to a new subclass of B12-dependent RS methylases.


Assuntos
Metaloproteinase 10 da Matriz/metabolismo , S-Adenosilmetionina/metabolismo , Vitamina B 12/metabolismo , Biocatálise , Metilação , Oxirredutases/metabolismo , Peptídeos/metabolismo , S-Adenosilmetionina/química , Especificidade por Substrato , Vitamina B 12/análogos & derivados , Vitamina B 12/química
16.
J Biol Chem ; 294(5): 1609-1617, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30538130

RESUMO

The lipoyl cofactor plays an integral role in several essential biological processes. The last step in its de novo biosynthetic pathway, the attachment of two sulfur atoms at C6 and C8 of an n-octanoyllysyl chain, is catalyzed by lipoyl synthase (LipA), a member of the radical SAM superfamily. In addition to the [4Fe-4S] cluster common to all radical SAM enzymes, LipA contains a second [4Fe-4S] auxiliary cluster, which is sacrificed during catalysis to supply the requisite sulfur atoms, rendering the protein inactive for further turnovers. Recently, it was shown that the Fe-S cluster carrier protein NfuA from Escherichia coli can regenerate the auxiliary cluster of E. coli LipA after each turnover, but the molecular mechanism is incompletely understood. Herein, using protein-protein interaction and kinetic assays as well as site-directed mutagenesis, we provide further insight into the mechanism of NfuA-mediated cluster regeneration. In particular, we show that the N-terminal A-type domain of E. coli NfuA is essential for its tight interaction with LipA. Further, we demonstrate that NfuA from Mycobacterium tuberculosis can also regenerate the auxiliary cluster of E. coli LipA. However, an Nfu protein from Staphylococcus aureus, which lacks the A-type domain, was severely diminished in facilitating cluster regeneration. Of note, addition of the N-terminal domain of E. coli NfuA to S. aureus Nfu, fully restored cluster-regenerating activity. These results expand our understanding of the newly discovered mechanism by which the auxiliary cluster of LipA is restored after each turnover.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Catálise , Proteínas de Escherichia coli/química , Ferro/química , Proteínas Ferro-Enxofre/química , Domínios Proteicos , Enxofre/química
17.
J Biol Chem ; 294(31): 11712-11725, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31113866

RESUMO

Methyl coenzyme M reductase (MCR) catalyzes the last step in the biological production of methane by methanogenic archaea, as well as the first step in the anaerobic oxidation of methane to methanol by methanotrophic archaea. MCR contains a number of unique post-translational modifications in its α subunit, including thioglycine, 1-N-methylhistidine, S-methylcysteine, 5-C-(S)-methylarginine, and 2-C-(S)-methylglutamine. Recently, genes responsible for the thioglycine and methylarginine modifications have been identified in bioinformatics studies and in vivo complementation of select mutants; however, none of these reactions has been verified in vitro Herein, we purified and biochemically characterized the radical S-adenosylmethionine (SAM) protein MaMmp10, the product of the methanogenesis marker protein 10 gene in the methane-producing archaea Methanosarcina acetivorans Using an array of approaches, including kinetic assays, LC-MS-based quantification, and MALDI TOF-TOF MS analyses, we found that MaMmp10 catalyzes the methylation of the equivalent of Arg285 in a peptide substrate surrogate, but only in the presence of cobalamin. We noted that the methyl group derives from SAM, with cobalamin acting as an intermediate carrier, and that MaMmp10 contains a C-terminal cobalamin-binding domain. Given that Mmp10 has not been annotated as a cobalamin-binding protein, these findings suggest that cobalamin-dependent radical SAM proteins are more prevalent than previously thought.


Assuntos
Proteínas Arqueais/metabolismo , Metaloproteinase 10 da Matriz/metabolismo , Methanosarcina/enzimologia , Vitamina B 12/metabolismo , Biocatálise , Cromatografia Líquida de Alta Pressão , Cinética , Metaloproteinase 10 da Matriz/genética , Metilação , Peptídeos/análise , Peptídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Vitamina B 12/análogos & derivados , Vitamina B 12/química
18.
J Biol Chem ; 294(52): 20109-20121, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31753919

RESUMO

The opportunistic bacterial pathogen Pseudomonas aeruginosa is a leading cause of serious infections in individuals with cystic fibrosis, compromised immune systems, or severe burns. P. aeruginosa adhesion to host epithelial cells is enhanced by surface-exposed translation elongation factor EF-Tu carrying a Lys-5 trimethylation, incorporated by the methyltransferase EftM. Thus, the EF-Tu modification by EftM may represent a target to prevent P. aeruginosa infections in vulnerable individuals. Here, we extend our understanding of EftM activity by defining the molecular mechanism by which it recognizes EF-Tu. Acting on the observation that EftM can bind to EF-Tu lacking its N-terminal peptide (encompassing the Lys-5 target site), we generated an EftM homology model and used it in protein/protein docking studies to predict EftM/EF-Tu interactions. Using site-directed mutagenesis of residues in both proteins, coupled with binding and methyltransferase activity assays, we experimentally validated the predicted protein/protein interface. We also show that EftM cannot methylate the isolated N-terminal EF-Tu peptide and that binding-induced conformational changes in EftM are likely needed to enable placement of the first 5-6 amino acids of EF-Tu into a conserved peptide-binding channel in EftM. In this channel, a group of residues that are highly conserved in EftM proteins position the N-terminal sequence to facilitate Lys-5 modification. Our findings reveal that EftM employs molecular strategies for substrate recognition common among both class I (Rossmann fold) and class II (SET domain) methyltransferases and pave the way for studies seeking a deeper understanding of EftM's mechanism of action on EF-Tu.


Assuntos
Proteínas de Bactérias/metabolismo , Metiltransferases/metabolismo , Pseudomonas aeruginosa/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Evolução Molecular , Metiltransferases/química , Metiltransferases/genética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Especificidade por Substrato
19.
Pharmacol Res ; 161: 105161, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32846213

RESUMO

Cellular homeostasis in eukaryotic cells requires synchronized coordination of multiple organelles. A key role in this stage is played by mitochondria, which have recently emerged as highly interconnected and multifunctional hubs that process and coordinate diverse cellular functions. Beyond producing ATP, mitochondria generate key metabolites and are central to apoptotic and metabolic signaling pathways. Because most mitochondrial proteins are encoded in the nuclear genome, the biogenesis of new mitochondria and the maintenance of mitochondrial functions and flexibility critically depend upon effective mitonuclear communication. This review addresses the complex network of signaling molecules and pathways allowing mitochondria-nuclear communication and coordinated regulation of their independent but interconnected genomes, and discusses the extent to which dynamic communication between the two organelles has evolved for mutual benefit and for the overall maintenance of cellular and organismal fitness.


Assuntos
Comunicação Celular , Núcleo Celular/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Animais , Núcleo Celular/genética , Regulação da Expressão Gênica , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Nucleares/genética , Transdução de Sinais
20.
J Biol Chem ; 293(48): 18681-18692, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30377254

RESUMO

Polyamines have a long history in biochemistry and physiology, dating back to 1678 when Leeuwenhoek first reported crystals that were composed of spermine phosphate in seminal fluid. Their quantification and biosynthetic pathway were first described by Herb and Celia Tabor in collaboration with Sanford Rosenthal in the late 1950s. This work led to immense interest in their physiological functions. The 11 Minireviews in this collection illustrate many of the wide-ranging biochemical effects of the polyamines. This series provides a fitting tribute to Herb Tabor on the occasion of his 100th birthday, demonstrating clearly the importance and growth of the research field that he pioneered in the late 1950s and has contributed to for many years. His studies of the synthesis, function, and toxicity of polyamines have yielded multiple insights into fundamental biochemical processes and formed the basis of successful and continuing drug development. This Minireview series reviews the highly diverse properties of polyamines in bacteria, protozoa, and mammals, highlighting the importance of these molecules in growth, development, and response to the environment, and their involvement in diseases, including cancer, and those caused by parasitic protozoans.


Assuntos
Pesquisa Biomédica/história , Poliaminas/história , Poliaminas/metabolismo , Animais , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Neoplasias/genética , Neoplasias/história , Neoplasias/metabolismo , Poliaminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA