Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(10): e23656, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38752523

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Obesity is a major risk factor for the development of COVID-19. Angiotensin-converting enzyme 2 (ACE2) is an essential receptor for cell entry of SARS-CoV-2. The receptor-binding domain of the S1 subunit (S1-RBD protein) in the SARS-CoV-2 spike glycoprotein binds to ACE2 on host cells, through which the virus enters several organs, including the lungs. Considering these findings, recombinant ACE2 might be utilized as a decoy protein to attenuate SARS-CoV-2 infection. Here, we examined whether obesity increases ACE2 expression in the lungs and whether recombinant ACE2 administration diminishes the entry of S1-RBD protein into lung cells. We observed that high-fat diet-induced obesity promoted ACE2 expression in the lungs by increasing serum levels of LPS derived from the intestine. S1-RBD protein entered the lungs specifically through ACE2 expressed in host lungs and that the administration of recombinant ACE2 attenuated this entry. We conclude that obesity makes hosts susceptible to recombinant SARS-CoV-2 spike proteins due to elevated ACE2 expression in lungs, and this model of administering S1-RBD protein can be applied to new COVID-19 treatments.


Assuntos
COVID-19 , Dieta Hiperlipídica , Pulmão , Obesidade , Proteínas Recombinantes , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Masculino , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , COVID-19/metabolismo , COVID-19/virologia , Dieta Hiperlipídica/efeitos adversos , Pulmão/metabolismo , Pulmão/virologia , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Proteínas Recombinantes/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
2.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674024

RESUMO

The COVID-19 pandemic prompted rapid research on SARS-CoV-2 pathogenicity. Consequently, new data can be used to advance the molecular understanding of SARS-CoV-2 infection. The present bioinformatics study discusses the "spikeopathy" at the molecular level and focuses on the possible post-transcriptional regulation of the SARS-CoV-2 spike protein S1 subunit in the host cell/tissue. A theoretical protein-RNA recognition code was used to check the compatibility of the SARS-CoV-2 spike protein S1 subunit with mRNAs in the human transcriptome (1-L transcription). The principle for this method is elucidated on the defined RNA binding protein GEMIN5 (gem nuclear organelle-associated protein 5) and RNU2-1 (U2 spliceosomal RNA). Using the method described here, it was shown that 45% of the genes/proteins identified by 1-L transcription of the SARS-CoV-2 spike protein S1 subunit are directly linked to COVID-19, 39% are indirectly linked to COVID-19, and 16% cannot currently be associated with COVID-19. The identified genes/proteins are associated with stroke, diabetes, and cardiac injury.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/virologia , COVID-19/metabolismo , COVID-19/genética , Transcrição Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biologia Computacional/métodos , Transcriptoma
3.
Appl Environ Microbiol ; 89(3): e0210622, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36815797

RESUMO

There is mounting evidence of the contamination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the sewage, surface water, and even marine environment. Various studies have confirmed that bivalve mollusks can bioaccumulate SARS-CoV-2 RNA to detectable levels. However, these results do not provide sufficient evidence for the presence of infectious viral particles. To verify whether oysters can bind the viral capsid and bioaccumulate the viral particles, Pacific oysters were artificially contaminated with the recombinant SARS-CoV-2 spike protein S1 subunit (rS1). The bioaccumulation pattern of the rS1 in different tissues was investigated by immunohistological assays. The results revealed that the rS1 was bioaccumulated predominately in the digestive diverticula. The rS1 was also present in the epithelium of the nondigestive tract tissues, including the gills, mantle, and heart. In addition, three potential binding ligands, including angiotensin-converting enzyme 2 (ACE 2)-like substances, A-type histo-blood group antigen (HBGA)-like substances, and oyster heat shock protein 70 (oHSP 70), were confirmed to bind rS1 and were distributed in tissues with various patterns. The colocalization analysis of rS1 and those potential ligands indicated that the distributions of rS1 are highly consistent with those of ACE 2-like substances and oHSP 70. Both ligands are distributed predominantly in the secretory absorptive cells of the digestive diverticula and may serve as the primary ligands to bind rS1. Therefore, oysters are capable of bioaccumulating the SARS-CoV-2 capsid readily by filter-feeding behavior assisted by specific binding ligands, especially in digestive diverticula. IMPORTANCE This is the first article to investigate the SARS-CoV-2 spike protein bioaccumulation pattern and mechanism in Pacific oysters by the histochemical method. Oysters can bioaccumulate SARS-CoV-2 capsid readily by filter-feeding behavior assisted by specific binding ligands. The new possible foodborne transmission route may change the epidemic prevention strategies and reveal some outbreaks that current conventional epidemic transmission routes cannot explain. This original and interdisciplinary paper advances a mechanistic understanding of the bioaccumulation of SARS-CoV-2 in oysters inhabiting contaminated surface water.


Assuntos
COVID-19 , Ostreidae , Animais , Humanos , Glicoproteína da Espícula de Coronavírus/genética , SARS-CoV-2 , RNA Viral , Bioacumulação , Água
4.
Brain Behav Immun ; 100: 267-277, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34915155

RESUMO

SARS-CoV-2 infection produces neuroinflammation as well as neurological, cognitive (i.e., brain fog), and neuropsychiatric symptoms (e.g., depression, anxiety), which can persist for an extended period (6 months) after resolution of the infection. The neuroimmune mechanism(s) that produces SARS-CoV-2-induced neuroinflammation has not been characterized. Proposed mechanisms include peripheral cytokine signaling to the brain and/or direct viral infection of the CNS. Here, we explore the novel hypothesis that a structural protein (S1) derived from SARS-CoV-2 functions as a pathogen-associated molecular pattern (PAMP) to induce neuroinflammatory processes independent of viral infection. Prior evidence suggests that the S1 subunit of the SARS-CoV-2 spike protein is inflammatory in vitro and signals through the pattern recognition receptor TLR4. Therefore, we examined whether the S1 subunit is sufficient to drive 1) a behavioral sickness response, 2) a neuroinflammatory response, 3) direct activation of microglia in vitro, and 4) activation of transgenic human TLR2 and TLR4 HEK293 cells. Adult male Sprague-Dawley rats were injected intra-cisterna magna (ICM) with vehicle or S1. In-cage behavioral monitoring (8 h post-ICM) demonstrated that S1 reduced several behaviors, including total activity, self-grooming, and wall-rearing. S1 also increased social avoidance in the juvenile social exploration test (24 h post-ICM). S1 increased and/or modulated neuroimmune gene expression (Iba1, Cd11b, MhcIIα, Cd200r1, Gfap, Tlr2, Tlr4, Nlrp3, Il1b, Hmgb1) and protein levels (IFNγ, IL-1ß, TNF, CXCL1, IL-2, IL-10), which varied across brain regions (hypothalamus, hippocampus, and frontal cortex) and time (24 h and 7d) post-S1 treatment. Direct exposure of microglia to S1 resulted in increased gene expression (Il1b, Il6, Tnf, Nlrp3) and protein levels (IL-1ß, IL-6, TNF, CXCL1, IL-10). S1 also activated TLR2 and TLR4 receptor signaling in HEK293 transgenic cells. Taken together, these findings suggest that structural proteins derived from SARS-CoV-2 might function independently as PAMPs to induce neuroinflammatory processes via pattern recognition receptor engagement.


Assuntos
COVID-19 , Microglia , Animais , Células HEK293 , Humanos , Masculino , Doenças Neuroinflamatórias , Moléculas com Motivos Associados a Patógenos , Ratos , Ratos Sprague-Dawley , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
5.
Microb Pathog ; 158: 105108, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34324997

RESUMO

The coronavirus disease 2019 (COVID-19), as an unprecedented pandemic, has rapidly spread around the globe. Its etiological agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), belongs to the genus Betacoronavirus in the family Coronaviridae. The viral S1 subunit has been demonstrated to have a powerful potential in inducing protective immune responses in vivo. Since April 2020, farmed minks were frequently reported to be infected with the SARS-CoV-2 in different countries. Unfortunately, there has been no available veterinary vaccine as yet. In this study, we used reverse genetics to rescue a recombinant canine distemper virus (CDV) that could express the SARS-CoV-2 S1 subunit in vitro. The S1 subunit sequence was demonstrated to be relatively stable in the genome of recombinant CDV during twenty serial viral passages in cells. However, due to introduction of the S1 subunit sequence into CDV genome, this recombinant CDV grew more slowly than the wild-type strain did. The genomic backbone of recombinant CDV was derived from a virulence-attenuating strain (QN strain). Therefore, if able to induce immune protections in minks from canine distemper and COVID-19 infections, this recombinant would be a potential vaccine candidate for veterinary use.


Assuntos
COVID-19 , Vírus da Cinomose Canina , Animais , Vírus da Cinomose Canina/genética , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
6.
Biochemistry (Mosc) ; 86(3): 257-261, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33838638

RESUMO

The imbalance of the renin-angiotensin system is currently considered as a potentially important factor of the pathogenesis of COVID-19 disease. It has been shown previously in the murine model, that the expression of angiotensin-converting enzyme 2 (ACE2) on the cell surface is downregulated in response to the infection by SARS-CoV virus or recombinant spike protein (S protein) alone. In the case of natural infection, circulation of the S protein in a soluble form is unlikely. However, in SARS-CoV-2, a large fraction of S protein trimers is pre-processed during virion morphogenesis due to the presence of furin protease cleavage site between the S1 and S2 subunits. Therefore, S protein transition into the fusion conformation may be accompanied by the separation of the S1 subunits carrying the receptor-binding domains from the membrane-bound S2 subunits. The fate of the S1 particles shed due to the spontaneous "firing" of some S protein trimers exposed on the virions and on the surface of infected cells has been never investigated. We hypothesize that the soluble S1 subunits of the SARS-CoV-2 S protein shed from the infected cells and from the virions in vivo may bind to the ACE2 and downregulate cell surface expression of this protein. The decrease in the ACE2 activity on the background of constant or increased ACE activity in the lungs may lead to the prevalence of angiotensin II effects over those of angiotensin (1-7), thus promoting thrombosis, inflammation, and pulmonary damage. This hypothesis also suggests the association between less pronounced shedding of the S1 particles reported for the S protein carrying the D614G mutation (vs. the wild type D614 protein), and lack of increased severity of the COVID-19 infection caused by the mutant (D614G) SARS-CoV-2 strain, despite its higher infectivity and higher in vivo viral load.


Assuntos
COVID-19/virologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , COVID-19/patologia , Humanos , Camundongos , Modelos Moleculares , Mutação , Multimerização Proteica , Subunidades Proteicas , Sistema Renina-Angiotensina , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética
7.
Ann Diagn Pathol ; 51: 151682, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33360731

RESUMO

Neurologic complications of symptomatic COVID-19 are common. Brain tissues from 13 autopsies of people who died of COVID-19 were examined. Cultured endothelial and neuronal cells were incubated with and wild type mice were injected IV with different spike subunits. In situ analyses were used to detect SARS-CoV-2 proteins and the host response. In 13/13 brains from fatal COVID-19, pseudovirions (spike, envelope, and membrane proteins without viral RNA) were present in the endothelia of microvessels ranging from 0 to 14 positive cells/200× field (mean 4.3). The pseudovirions strongly co-localized with caspase-3, ACE2, IL6, TNFα, and C5b-9. The surrounding neurons demonstrated increased NMDAR2 and neuronal NOS plus decreased MFSD2a and SHIP1 proteins. Tail vein injection of the full length S1 spike subunit in mice led to neurologic signs (increased thirst, stressed behavior) not evident in those injected with the S2 subunit. The S1 subunit localized to the endothelia of microvessels in the mice brain and showed co-localization with caspase-3, ACE2, IL6, TNFα, and C5b-9. The surrounding neurons showed increased neuronal NOS and decreased MFSD2a. It is concluded that ACE2+ endothelial damage is a central part of SARS-CoV2 pathology and may be induced by the spike protein alone. Thus, the diagnostic pathologist can use either hematoxylin and eosin stain or immunohistochemistry for caspase 3 and ACE2 to document the endothelial cell damage of COVID-19.


Assuntos
COVID-19/virologia , Células Endoteliais/virologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Autopsia/métodos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Camundongos , Microvasos/metabolismo , Microvasos/virologia , Pessoa de Meia-Idade , Subunidades Proteicas/metabolismo , RNA Viral/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
8.
Acta Virol ; 61(2): 212-216, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28523928

RESUMO

Bovine coronavirus (BCoV) is considered an important pathogen in cattle worldwide. It is a causative agent of enteric and respiratory diseases of cattle. The S1 subunit of the viral S glycoprotein is responsible for virus binding to host-cell receptors, induction of neutralizing antibody and hemagglutinin activity. The entire S1 genomic region (2304 bp) of two enteric bovine coronavirus isolates from Austria, one respiratory and one enteric isolate from Slovakia were analyzed at the genetic level. The comparative analysis of those four isolates revealed 97.1-98.6% similarity at the nucleotide and 95.6-98.6% at the amino acid level. No differences between enteric and respiratory isolates were observed at the genetic level. The isolates were clustered in the phylogenetic tree with European isolates independently of their enteric or respiratory origin.


Assuntos
Coronavirus Bovino/genética , Variação Genética , Sequência de Aminoácidos , Animais , Regulação Viral da Expressão Gênica/fisiologia , Subunidades Proteicas
9.
J Med Life ; 16(6): 883-889, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37675173

RESUMO

The RBD, S, and N proteins, the three main antigens of the SARS-CoV-2 virus, activate the host immune system and cause the formation of IgM and IgG antibodies. While IgM indicates an early, acute infection stage, IgG shows a past infection or persistent sickness. This study used an indirect ELISA assay that targets the S1 subunit of the SARS-CoV-2 S protein to create an in-house, qualitative serological test specific to COVID-19. A total of 60 serum samples were examined using ELISA for anti-SARS-CoV-2 IgG, and 50 of those results were positive. An additional 20 samples were taken from cases that occurred before the pandemic. For the in-house ELISA assay, a plasmid containing the gene coding for the S1 subunit was transformed into E. coli DH5ɑ bacterial cells and the protein was synthesized and purified. The purified protein was utilized to coat the ELISA plate, which was subsequently used to assess the levels of IgG among individuals with SARS-CoV-2 infection. The study found a significant association (p-value=0.01) between the in-house and the commercial anti-S1 subunit IgG antibodies kits. The in-house ELISA responded well, with a sensitivity and specificity of 75.0% and 88.89%, respectively. Furthermore, a library of SARS-CoV-2 recombinant S1 subunits was created by competent bacteria and may be employed for various tasks, such as creating diagnostic tools and scientific investigation. Overall, the in-house anti-SARS-CoV-2 human IgG-ELISA proved to be sensitive and specific for identifying IgG antibodies in patients exposed to SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Análise Custo-Benefício , Escherichia coli , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G , Anticorpos Antivirais , Imunoglobulina M
10.
Vaccines (Basel) ; 11(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37631859

RESUMO

Infectious bronchitis (IB) is a major threat to the global poultry industry. Despite the availability of commercial vaccines, the IB epidemic has not been effectively controlled. The exploration of novel IBV vaccines may provide a new way to prevent and control IB. In this study, BLP-S1, a bacterium-like particle displaying the S1 subunit of infectious bronchitis virus (IBV), was constructed using the GEM-PA surface display system. The immunoprotective efficacy results showed that BLP-S1 can effectively induce specific IgG and sIgA immune responses, providing a protection rate of 90% against IBV infection in 14-day-old commercial chickens. These results suggest that BLP-S1 has potential for the development of novel vaccines with good immunogenicity and immunoprotection.

11.
Viruses ; 15(3)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36992463

RESUMO

Critically ill COVID-19 patients display signs of generalized hyperinflammation. Macrophages trigger inflammation to eliminate pathogens and repair tissue, but this process can also lead to hyperinflammation and resulting exaggerated disease. The role of macrophages in dysregulated inflammation during SARS-CoV-2 infection is poorly understood. We inoculated and treated human macrophage cell line THP-1 with SARS-CoV-2 and purified, glycosylated, soluble SARS-CoV-2 spike protein S1 subunit (S1) to clarify the role of macrophages in pro-inflammatory responses. Soluble S1 upregulated TNF-α and CXCL10 mRNAs, and induced secretion of TNF-α from THP-1 macrophages. While THP-1 macrophages did not support productive SARS-CoV-2 replication or viral entry, virus exposure resulted in upregulation of both TNF-α and CXCL10 genes. Our study shows that extracellular soluble S1 protein is a key viral component inducing pro-inflammatory responses in macrophages, independent of virus replication. Thus, virus- or soluble S1-activated macrophages may become sources of pro-inflammatory mediators contributing to hyperinflammation in COVID-19 patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Fator de Necrose Tumoral alfa , Inflamação , Macrófagos
12.
Vet Microbiol ; 280: 109727, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36958068

RESUMO

Our previous study revealed that tissue culture-adapted porcine epidemic diarrhea virus (PEDV) strains, namely KNU-141112-S DEL2/ORF3 and -S DEL5/ORF3, were attenuated to different extents in vivo, suggesting that their independent deletion (DEL) signatures, including 2-amino acid (aa; residues 56-57) or 5-aa (residues 56-60) DEL in the N-terminal domain (NTD) of the spike (S) protein, may contribute to the reduced virulence of each strain. To investigate whether each DEL in the NTD of the S1 subunit is a determinant for the virulence of PEDV, we generated two mutant viruses, named icS DEL2 and icS DEL5, by introducing the identical double or quintuple aa DEL into S1 using reverse genetics with an infectious cDNA clone of KNU-141112 (icKNU-141112). We then orally inoculated conventional suckling piglets with icKNU-141112, icS DEL2, or icS DEL5 to compare their pathogenicities. The virulence of both DEL mutant viruses was significantly diminished compared to that of icKNU-141112, which causes severe clinical signs and 100 % mortality. Interestingly, the degree of attenuation differed between the two mutant viruses: icS DEL5 caused neither diarrhea nor mortality, whereas icS DEL2 caused mild to moderate diarrhea, higher viral titers in feces and intestinal tissues, and 25 % mortality. Furthermore, the icS DEL5-infected piglets displayed no remarkable macroscopic and microscopic intestinal lesions, while the icS DEL2-infected piglets showed histopathological changes in small intestine tissues, including moderate-to-severe villous atrophy. Our data indicate that the loss of the pentad (56GENQG60) residues in S alone can be sufficient to give rise to an attenuated phenotype of PEDV.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Infecções por Coronavirus/veterinária , Glicoproteína da Espícula de Coronavírus/genética , Diarreia/veterinária
13.
Vaccines (Basel) ; 11(11)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38006059

RESUMO

Polymyxin B (PMB) is an antibiotic that exhibits mucosal adjuvanticity for ovalbumin (OVA), which enhances the immune response in the mucosal compartments of mice. Frequent breakthrough infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants indicate that the IgA antibody levels elicited by the mRNA vaccines in the mucosal tissues were insufficient for the prophylaxis of this infection. It remains unknown whether PMB exhibits mucosal adjuvanticity for antigens other than OVA. This study investigated the adjuvanticity of PMB for the virus proteins, hemagglutinin (HA) of influenza A virus, and the S1 subunit and S protein of SARS-CoV-2. BALB/c mice immunized either intranasally or subcutaneously with these antigens alone or in combination with PMB were examined, and the antigen-specific antibodies were quantified. PMB substantially increased the production of antigen-specific IgA antibodies in mucosal secretions and IgG antibodies in plasma, indicating its adjuvanticity for both HA and S proteins. This study also revealed that the PMB-virus antigen complex diameter is crucial for the induction of mucosal immunity. No detrimental effects were observed on the nasal mucosa or olfactory bulb. These findings highlight the potential of PMB as a safe candidate for intranasal vaccination to induce mucosal IgA antibodies for prophylaxis against mucosally transmitted infections.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120269, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34418811

RESUMO

In the present work the temperature response of the constitutive S1 segment of the SARS-CoV-2 Spike Glycoprotein (GPS) has been studied. The intensity of the Raman bands remained almost constant before reaching a temperature of 133 °C. At this temperature a significant reduction of peak intensities was observed. Above 144 °C the spectra ceased to show any recognizable feature as that of the GPS S1, indicating that it had transformed after the denaturation process that it was subjected. The GPS S1 change is irreversible. Hence, Raman Spectroscopy (RS) provides a precision method to determine the denaturation temperature (TD) of dry powder GPS S1. The ability of RS was calibrated through the reproduction of TD of other well studied proteins as well as those of the decomposition temperature of some amino acids (AA). Through this study we established a TD of 139 ± 3 °C for powder GPS S1 of SARS-CoV-2.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2 , Análise Espectral Raman , Temperatura
15.
J Clin Med ; 11(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35160039

RESUMO

(1) Background: This study aimed to analyze if the serum albumin levels of hospitalized SARS-CoV-2 (COVID-19) patients on admission could predict <30 days in-hospital all-cause mortality, and if glucose levels on admission affected this predictive ability. (2) Methods: A multicenter retrospective cohort of 1555 COVID-19-infected adult patients from public hospitals of the Madrid community were analyzed. (3) Results: Logistic regression analysis showed increased mortality for ages higher than 49 y. After adjusting for age, comorbidities and on-admission glucose levels, it was found that on-admission serum albumin ≥3.5 g/dL was significantly associated with reduced mortality (OR 0.48; 95%CI:0.36-0.62). There was an inverse concentration-dependent association between on-admission albumin levels and <30 days in-hospital all-cause mortality. However, when on-admission glucose levels were above 125 mg/dL, higher levels of serum albumin were needed to reach an association with survival. In vitro experiments showed that the spike protein S1 subunit of SARS-CoV-2 binds to native albumin. The binding ability of native albumin to the spike protein S1 subunit was decreased in the presence of an increasing concentration of glycated albumin. (4) Conclusions: On-admission serum albumin levels were inversely associated with <30 days in-hospital all-cause mortality. Native albumin binds the spike protein S1 subunit, suggesting that native albumin may act as a scavenger of the SARS-CoV-2 virus.

16.
AMB Express ; 12(1): 18, 2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35150368

RESUMO

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread globally, a series of vaccines, antibodies and drugs have been developed to combat coronavirus disease 2019 (COVID-19). High specific antibodies are powerful tool for the development of immunoassay and providing passive immunotherapy against SARS-CoV-2 and expected with large scale production. SARS-CoV-2 S1 protein was expressed in E. coli BL21 and purified by immobilized metal affinity chromatography, as antigen used to immunize hens, the specific IgY antibodies were extracted form egg yolk by PEG-6000 precipitation, and the titer of anti-S1 IgY antibody reached 1:10,000. IgY single chain variable fragment antibody (IgY-scFv) was generated by using phage display technology and the IgY-scFv showed high binding sensitivity and capacity to S1 protein of SARS-CoV-2, and the minimum detectable antigen S1 protein concentration was 6 ng/µL. The docking study showed that the multiple epitopes on the IgY-scFv interacted with multiple residues on SARS-CoV-2 S1 RBD to form hydrogen bonds. This preliminary study suggests that IgY and IgY-scFv are suitable candidates for the development of immunoassay and passive immunotherapy for COVID-19 to humans and animals.

17.
Vaccines (Basel) ; 10(2)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35214693

RESUMO

SARS-CoV-2 vaccine production has taken us by storm. We aim to fill in the history of concepts and the work of pioneers and provide a framework of strategies employing structural vaccinology. Cryo-electron microscopy became crucial in providing three-dimensional (3D) structures and creating candidates eliciting T and B cell-mediated immunity. It also determined structural changes in the emerging mutants in order to design new constructs that can be easily, quickly and safely added to the vaccines. The full-length spike (S) protein, the S1 subunit and its receptor binding domain (RBD) of the virus are the best candidates. The vaccine development to cease this COVID-19 pandemic sets a milestone for the pan-coronavirus vaccine's designing and manufacturing. By employing structural vaccinology, we propose that the mRNA and the protein sequences of the currently approved vaccines should be modified rapidly to keep up with the more infectious new variants.

18.
Heliyon ; 7(2): e06187, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33644468

RESUMO

Coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has now spread globally. Some patients develop severe complications including multiple organ failure. It has been suggested that excessive inflammation associated with the disease plays major role in the severity and mortality of COVID-19. To elucidate the inflammatory mechanisms involved in COVID-19, we examined the effects of SARS-CoV-2 spike protein S1 subunit (hereafter S1) on the pro-inflammatory responses in murine and human macrophages. Murine peritoneal exudate macrophages produced pro-inflammatory mediators in response to S1 exposure. Exposure to S1 also activated nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) signaling pathways. Pro-inflammatory cytokine induction by S1 was suppressed by selective inhibitors of NF-κB and JNK pathways. Treatment of murine peritoneal exudate macrophages and human THP-1 cell-derived macrophages with a toll-like receptor 4 (TLR4) antagonist attenuated pro-inflammatory cytokine induction and the activation of intracellular signaling by S1 and lipopolysaccharide. Similar results were obtained in experiments using TLR4 siRNA-transfected murine RAW264.7 macrophages. In contrast, TLR2 neutralizing antibodies could not abrogate the S1-induced pro-inflammatory cytokine induction in either RAW264.7 or THP-1 cell-derived macrophages. These results suggest that SARS-CoV-2 spike protein S1 subunit activates TLR4 signaling to induce pro-inflammatory responses in murine and human macrophages. Therefore, TLR4 signaling in macrophages may be a potential target for regulating excessive inflammation in COVID-19 patients.

19.
Front Chem ; 9: 735768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650958

RESUMO

Coronavirus disease-2019 (COVID-19) has caused a severe impact on almost all aspects of human life and economic development. Numerous studies are being conducted to find novel therapeutic strategies to overcome COVID-19 pandemic in a much effective way. Ulva intestinalis L. (Ui), a marine microalga, known for its antiviral property, was considered for this study to determine the antiviral efficacy against severe acute respiratory syndrome-associated Coronavirus-2 (SARS-CoV-2). The algal sample was dried and subjected to ethanolic extraction, followed by purification and analysis using gas chromatography-coupled mass spectrometry (GC-MS). Forty-three known compounds were identified and docked against the S1 receptor binding domain (RBD) of the spike (S) glycoprotein. The compounds that exhibited high binding affinity to the RBD of S1 protein were further analyzed for their chemical behaviour using conceptual density-functional theory (C-DFT). Finally, pharmacokinetic properties and drug-likeliness studies were carried out to test if the compounds qualified as potential leads. The results indicated that mainly phenols, polyenes, phytosteroids, and aliphatic compounds from the extract, such as 2,4-di-tert-butylphenol (2,4-DtBP), doconexent, 4,8,13-duvatriene-1,3-diol (DTD), retinoyl-ß-glucuronide 6',3'-lactone (RBGUL), and retinal, showed better binding affinity to the target. Pharmacokinetic validation narrowed the list to 2,4-DtBP, retinal and RBGUL as the possible antiviral candidates that could inhibit the viral spike protein effectively.

20.
J Med Microbiol ; 69(1): 111-119, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31778110

RESUMO

Introduction. Differences between the genomic and virulence profile of Bordetella pertussis circulating strains and vaccine strains are considered as one of the important reasons for the resurgence of whooping cough (pertussis) in the world. Genetically inactivated B. pertussis is one of the new strategies to generate live-attenuated vaccines against whooping cough.Aim. The aim of this study was to construct a B. pertussis strain based on a predominant profile of circulating Iranian isolates that produces inactivated pertussis toxin (PTX).Methodology. The B. pertussis strain BPIP91 with predominant genomic and virulence pattern was selected from the biobank of the Pasteur Institute of Iran. A BPIP91 derivative with R9K and E129G alterations in the S1 subunit of PTX (S1mBPIP91) was constructed by the site-directed mutagenesis and homologous recombination. Genetic stability and antigen expression of S1mBPIP91 were tested by serially in vitro passages and immunoblot analyses, respectively. The reduction in toxicity of S1mBPIP91 was determined by Chinese hamster ovary (CHO) cell clustering.Results. All constructs and S1mBPIP91 were confirmed via restriction enzyme analysis and DNA sequencing. The engineered mutations in S1mBPIP91 were stable after 20 serial in vitro passages. The production of virulence factors was also confirmed in S1mBPIP91. The CHO cell-clustering test demonstrated the reduction in PTX toxicity in S1mBPIP91.Conclusion. A B. pertussis of the predominant genomic and virulence lineage in Iran was successfully engineered to produce inactive PTX. This attenuated strain will be useful to further studies to develop both whole cell and acellular pertussis vaccines.


Assuntos
Antígenos de Bactérias/genética , Bordetella pertussis/genética , Bordetella pertussis/imunologia , Proteínas Mutantes/genética , Toxina Pertussis/genética , Vacina contra Coqueluche/genética , Animais , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/toxicidade , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Irã (Geográfico) , Mutagênese Sítio-Dirigida , Proteínas Mutantes/metabolismo , Proteínas Mutantes/toxicidade , Toxina Pertussis/metabolismo , Toxina Pertussis/toxicidade , Vacina contra Coqueluche/efeitos adversos , Engenharia de Proteínas , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA