Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1441: 295-311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884718

RESUMO

Cardiac development is a fine-tuned process governed by complex transcriptional networks, in which transcription factors (TFs) interact with other regulatory layers. In this chapter, we introduce the core cardiac TFs including Gata, Hand, Nkx2, Mef2, Srf, and Tbx. These factors regulate each other's expression and can also act in a combinatorial manner on their downstream targets. Their disruption leads to various cardiac phenotypes in mice, and mutations in humans have been associated with congenital heart defects. In the second part of the chapter, we discuss different levels of regulation including cis-regulatory elements, chromatin structure, and microRNAs, which can interact with transcription factors, modulate their function, or are downstream targets. Finally, examples of disturbances of the cardiac regulatory network leading to congenital heart diseases in human are provided.


Assuntos
Redes Reguladoras de Genes , Cardiopatias Congênitas , Fatores de Transcrição , Animais , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Coração/fisiologia , Miocárdio/metabolismo
2.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999942

RESUMO

Familial episodic pain syndrome (FEPS) is an early childhood onset disorder of severe episodic limb pain caused mainly by pathogenic variants of SCN11A, SCN10A, and SCN9A, which encode three voltage-gated sodium channels (VGSCs) expressed as key determinants of nociceptor excitability in primary sensory neurons. There may still be many undiagnosed patients with FEPS. A better understanding of the associated pathogenesis, epidemiology, and clinical characteristics is needed to provide appropriate diagnosis and care. For this study, nationwide recruitment of Japanese patients was conducted using provisional clinical diagnostic criteria, followed by genetic testing for SCN11A, SCN10A, and SCN9A. In the cohort of 212 recruited patients, genetic testing revealed that 64 patients (30.2%) harbored pathogenic or likely pathogenic variants of these genes, consisting of 42 (19.8%), 14 (6.60%), and 8 (3.77%) patients with variants of SCN11A, SCN10A, and SCN9A, respectively. Meanwhile, the proportions of patients meeting the tentative clinical criteria were 89.1%, 52.0%, and 54.5% among patients with pathogenic or likely pathogenic variants of each of the three genes, suggesting the validity of these clinical criteria, especially for patients with SCN11A variants. These clinical diagnostic criteria of FEPS will accelerate the recruitment of patients with underlying pathogenic variants who are unexpectedly prevalent in Japan.


Assuntos
Testes Genéticos , Canal de Sódio Disparado por Voltagem NAV1.7 , Canal de Sódio Disparado por Voltagem NAV1.8 , Canal de Sódio Disparado por Voltagem NAV1.9 , Humanos , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Japão/epidemiologia , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Masculino , Feminino , Testes Genéticos/métodos , Adulto , Adolescente , Criança , Predisposição Genética para Doença , Adulto Jovem , Pré-Escolar , Mutação , Dor , Reto/anormalidades
3.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38892333

RESUMO

The sodium channel NaV1.8, encoded by the SCN10A gene, has recently emerged as a potential regulator of cardiac electrophysiology. We have previously shown that NaV1.8 contributes to arrhythmogenesis by inducing a persistent Na+ current (late Na+ current, INaL) in human atrial and ventricular cardiomyocytes (CM). We now aim to further investigate the contribution of NaV1.8 to human ventricular arrhythmogenesis at the CM-specific level using pharmacological inhibition as well as a genetic knockout (KO) of SCN10A in induced pluripotent stem cell CM (iPSC-CM). In functional voltage-clamp experiments, we demonstrate that INaL was significantly reduced in ventricular SCN10A-KO iPSC-CM and in control CM after a specific pharmacological inhibition of NaV1.8. In contrast, we did not find any effects on ventricular APD90. The frequency of spontaneous sarcoplasmic reticulum Ca2+ sparks and waves were reduced in SCN10A-KO iPSC-CM and control cells following the pharmacological inhibition of NaV1.8. We further analyzed potential triggers of arrhythmias and found reduced delayed afterdepolarizations (DAD) in SCN10A-KO iPSC-CM and after the specific inhibition of NaV1.8 in control cells. In conclusion, we show that NaV1.8-induced INaL primarily impacts arrhythmogenesis at a subcellular level, with minimal effects on systolic cellular Ca2+ release. The inhibition or knockout of NaV1.8 diminishes proarrhythmic triggers in ventricular CM. In conjunction with our previously published results, this work confirms NaV1.8 as a proarrhythmic target that may be useful in an anti-arrhythmic therapeutic strategy.


Assuntos
Arritmias Cardíacas , Ventrículos do Coração , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Canal de Sódio Disparado por Voltagem NAV1.8 , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/citologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/etiologia , Potenciais de Ação/efeitos dos fármacos
4.
Pflugers Arch ; 475(11): 1343-1355, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37695396

RESUMO

The voltage-gated sodium channel NaV1.8 is prominently expressed in the soma and axons of small-caliber sensory neurons, and pathogenic variants of the corresponding gene SCN10A are associated with peripheral pain and autonomic dysfunction. While most disease-associated SCN10A variants confer gain-of-function properties to NaV1.8, resulting in hyperexcitability of sensory neurons, a few affect afferent excitability through a loss-of-function mechanism. Using whole-exome sequencing, we here identify a rare heterozygous SCN10A missense variant resulting in alteration p.V1287I in NaV1.8 in a patient with a 15-year history of progressively worsening temperature dysregulation in the distal extremities, particularly in the feet. Further symptoms include increasingly intensifying tingling and numbness in the fingers and increased sweating. To assess the impact of p.V1287I on channel function, we performed voltage-clamp recordings demonstrating that the alteration confers loss- and gain-of-function characteristics to NaV1.8 characterized by a right-shifted voltage dependence of channel activation and inactivation. Current-clamp recordings from transfected mouse dorsal root ganglion neurons further revealed that NaV1.8-V1287I channels broaden the action potentials of sensory neurons and increase their firing rates in response to depolarizing current stimulations, indicating a gain-of-function mechanism of the variant at the cellular level in a heterozygous setting. The data support the hypothesis that the properties of NaV1.8 p.V1287I are causative for the patient's symptoms and that nonpainful peripheral paresthesias should be considered part of the clinical spectrum of NaV1.8-associated disorders.

5.
Circulation ; 144(3): 229-242, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33910361

RESUMO

BACKGROUND: Genetic variants in SCN10A, encoding the neuronal voltage-gated sodium channel NaV1.8, are strongly associated with atrial fibrillation, Brugada syndrome, cardiac conduction velocities, and heart rate. The cardiac function of SCN10A has not been resolved, however, and diverging mechanisms have been proposed. Here, we investigated the cardiac expression of SCN10A and the function of a variant-sensitive intronic enhancer previously linked to the regulation of SCN5A, encoding the major essential cardiac sodium channel NaV1.5. METHODS: The expression of SCN10A was investigated in mouse and human hearts. With the use of CRISPR/Cas9 genome editing, the mouse intronic enhancer was disrupted, and mutant mice were characterized by transcriptomic and electrophysiological analyses. The association of genetic variants at SCN5A-SCN10A enhancer regions and gene expression were evaluated by genome-wide association studies single-nucleotide polymorphism mapping and expression quantitative trait loci analysis. RESULTS: We found that cardiomyocytes of the atria, sinoatrial node, and ventricular conduction system express a short transcript comprising the last 7 exons of the gene (Scn10a-short). Transcription occurs from an intronic enhancer-promoter complex, whereas full-length Scn10a transcript was undetectable in the human and mouse heart. Expression quantitative trait loci analysis revealed that the genetic variants in linkage disequilibrium with genetic variant rs6801957 in the intronic enhancer associate with SCN10A transcript levels in the heart. Genetic modification of the enhancer in the mouse genome led to reduced cardiac Scn10a-short expression in atria and ventricles, reduced cardiac sodium current in atrial cardiomyocytes, atrial conduction slowing and arrhythmia, whereas the expression of Scn5a, the presumed enhancer target gene, remained unaffected. In patch-clamp transfection experiments, expression of Scn10a-short-encoded NaV1.8-short increased NaV1.5-mediated sodium current. We propose that noncoding genetic variation modulates transcriptional regulation of Scn10a-short in cardiomyocytes that impacts NaV1.5-mediated sodium current and heart rhythm. CONCLUSIONS: Genetic variants in and around SCN10A modulate enhancer function and expression of a cardiac-specific SCN10A-short transcript. We propose that noncoding genetic variation modulates transcriptional regulation of a functional C-terminal portion of NaV1.8 in cardiomyocytes that impacts on NaV1.5 function, cardiac conduction velocities, and arrhythmia susceptibility.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Sistema de Condução Cardíaco/fisiologia , Íntrons , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Potenciais de Ação/genética , Animais , Biomarcadores , Doença do Sistema de Condução Cardíaco/diagnóstico , Doença do Sistema de Condução Cardíaco/genética , Doença do Sistema de Condução Cardíaco/fisiopatologia , Eletrofisiologia Cardíaca , Suscetibilidade a Doenças , Eletrocardiografia , Feminino , Estudos de Associação Genética , Masculino , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável
6.
Mol Biol Rep ; 48(6): 5355-5362, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34195885

RESUMO

Sick sinus syndrome (SSS) encompasses a group of conduction disorders characterized by the inability of sinoatrial node to perform its pacemaker function. Our aim was to identify genetic predictors of SSS in a prospective cohort of patients admitted to the clinic for pacemaker implantation using single-locus and multilocus approaches. We performed genotyping for polymorphic markers of CLCNKA (rs10927887), SCN10A (rs6795970), FNDC3B (rs9647379), MIR146A (rs2910164), SYT10 (rs7980799), MYH6 (rs365990), and KCNE1 (rs1805127) genes in the group of 284 patients with SSS and 243 healthy individuals. Associations between the studied loci and SSS were tested using logistic regression under recessive genetic model using sex and age as covariates. Multilocus analysis was performed using Markov chain Monte Carlo method implemented in the APSampler program. Correction for multiple testing was performed using Benjamini-Hochberg procedure. We detected an individual association between KCNE1 rs1805127*A allele and SSS in the total study group (OR 0.43, PFDR = 0.028) and in the subgroup of patients with 2nd or 3rd degree sinoatrial block (OR 0.17, PFDR = 0.033), and identified seven allelic patterns associated with the disease. SCN10A rs6795970*T and MIR146A rs2910164*C alleles were present in all seven combinations associated with SSS. The highest risk of SSS was conferred by the combination SCN10A rs6795970*T+FNDC3B rs9647379*C+MIR146A rs2910164*C+SYT10 rs7980799*C+KCNE1 rs1805127*G (OR 2.98, CI 1.77-5.00, P = 1.27 × 10-5, PFDR = 0.022). Our findings suggest that KCNE1 rs1805127 polymorphism may play a role in susceptibility to sinoatrial node dysfunction, particularly presenting as 2nd or 3rd degree sinoatrial block, and the risk-modifying effect of other studied loci is better detected using multilocus approach.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Síndrome do Nó Sinusal/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Miosinas Cardíacas/genética , Canais de Cloreto/genética , Estudos de Coortes , Feminino , Fibronectinas/genética , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Genótipo , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Cadeias Pesadas de Miosina/genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Prognóstico , Estudos Prospectivos , Federação Russa , Nó Sinoatrial/fisiopatologia , Sinaptotagminas/genética
7.
BMC Cancer ; 20(1): 325, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32295642

RESUMO

BACKGROUND: Sodium channels located in the dorsal root ganglion, particularly Nav1.7 and Nav1.8, encoded by SCN9A and SCN10A, respectively, act as molecular gatekeepers for pain detection. Our aim was to determine the association between TIPN and SCN9A and SCN10A polymorphisms. METHODS: Three single nucleotide polymorphisms (SNPs) in SCN9A and two in SCN10A were investigated using whole-genome genotyping data from 186 Japanese breast or ovarian cancer patients classified into two groups as follows: cases that developed taxane-induced grade 2-3 neuropathy (N = 108) and controls (N = 78) with grade 0-1 neuropathy. Multiple logistic regression analyses were conducted to evaluate associations between TIPN and SNP genotypes. RESULTS: SCN9A-rs13017637 was a significant predictor of grade 2 or higher TIPN (odds ratio (OR) = 3.463; P = 0.0050) after correction for multiple comparisons, and precision was improved when only breast cancer patients were included (OR 5.053, P = 0.0029). Moreover, rs13017637 was a significant predictor of grade 2 or higher TIPN 1 year after treatment (OR 3.906, P = 0.037), indicating its contribution to TIPN duration. CONCLUSION: SCN9A rs13017637 was associated with the severity and duration of TIPN. These findings are highly exploratory and require replication and validation prior to any consideration of clinical use.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Neoplasias Ovarianas/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/patologia , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ciclofosfamida/administração & dosagem , Docetaxel/administração & dosagem , Doxorrubicina/administração & dosagem , Epirubicina/administração & dosagem , Feminino , Fluoruracila/administração & dosagem , Seguimentos , Humanos , Japão/epidemiologia , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Paclitaxel/administração & dosagem , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/epidemiologia , Doenças do Sistema Nervoso Periférico/genética , Prognóstico , Estudos Prospectivos , Taxa de Sobrevida
8.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202810

RESUMO

Brugada syndrome (BrS) is an inherited electrical heart disease associated with a high risk of sudden cardiac death (SCD). The genetic characterization of BrS has always been challenging. Although several cardiac ion channel genes have been associated with BrS, SCN5A is the only gene that presents definitive evidence for causality to be used for clinical diagnosis of BrS. However, more than 65% of diagnosed cases cannot be explained by variants in SCN5A or other genes. Therefore, in an important number of BrS cases, the underlying mechanisms are still elusive. Common variants, mostly located in non-coding regions, have emerged as potential modulators of the disease by affecting different regulatory mechanisms, including transcription factors (TFs), three-dimensional organization of the genome, or non-coding RNAs (ncRNAs). These common variants have been hypothesized to modulate the interindividual susceptibility of the disease, which could explain incomplete penetrance of BrS observed within families. Altogether, the study of both common and rare variants in parallel is becoming increasingly important to better understand the genetic basis underlying BrS. In this review, we aim to describe the challenges of studying non-coding variants associated with disease, re-examine the studies that have linked non-coding variants with BrS, and provide further evidence for the relevance of regulatory elements in understanding this cardiac disorder.


Assuntos
Síndrome de Brugada , Genoma Humano , RNA não Traduzido , Elementos Reguladores de Transcrição , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Morte Súbita Cardíaca , Feminino , Humanos , Masculino , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
9.
J Cell Physiol ; 234(11): 19494-19501, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31187496

RESUMO

Neuropathic pain (NP) caused by nerve injury or dysfunction is one of the most challenging neurological diseases. In-depth study of disease signatures contributes to the development of novel target treatment for NP. In this study, we analyzed expression profiles of qualified NP datasets (GSE24982 and GSE63442) deposited at Gene Expression Omnibus database by systematic bioinformatics approaches. We analyzed the differentially expressed genes of high and low pain compared with normal control group, and between spinal nerve ligation (SNL) injury model and sham-operation group. A total of 1,243 upregulated and 1,533 downregulated genes were identified in GSE24982, 380 upregulated and 355 downregulated genes were identified in GSE63442. By comparing low-pain samples with the corresponding sham-operation group, we identified 457 upregulated and 409 downregulated genes. Overlapping genes were screened out and signaling pathway and expression regulation model analyses were performed. SCN10A and SST were identified as biomarkers for NP. In conclusion, our study showed the expression pattern of gene about NP. These identified biomarkers could serve as potential therapeutic targets for treating NP.


Assuntos
Redes Reguladoras de Genes/genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Neuralgia/genética , Somatostatina/genética , Biomarcadores/análise , Biologia Computacional , Feminino , Regulação da Expressão Gênica/genética , Ontologia Genética , Humanos , Masculino , Neuralgia/patologia , Neuralgia/terapia , Mapas de Interação de Proteínas/genética , Transdução de Sinais/genética , Medula Espinal/metabolismo , Medula Espinal/patologia
10.
J Neurophysiol ; 122(6): 2591-2600, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31642403

RESUMO

NaV1.8 channels play a crucial role in regulating the action potential in nociceptive neurons. A single nucleotide polymorphism in the human NaV1.8 gene SCN10A, A1073V (rs6795970, G>A), has been linked to the diminution of mechanical pain sensation as well as cardiac conduction abnormalities. Furthermore, studies have suggested that this polymorphism may result in a "loss-of-function" phenotype. In the present study, we performed genomic analysis of A1073V polymorphism presence in a cohort of patients undergoing sigmoid colectomy who provided information regarding perioperative pain and analgesic use. Homozygous carriers reported significantly reduced severity in postoperative abdominal pain compared with heterozygous and wild-type carriers. Homozygotes also trended toward using less analgesic/opiates during the postoperative period. We also heterologously expressed the wild-type and A1073V variant in rat superior cervical ganglion neurons. Electrophysiological testing demonstrated that the mutant NaV1.8 channels activated at more depolarized potentials compared with wild-type channels. Our study revealed that postoperative abdominal pain is diminished in homozygous carriers of A1073V and that this is likely due to reduced transmission of action potentials in nociceptive neurons. Our findings reinforce the importance of NaV1.8 and the A1073V polymorphism to pain perception. This information could be used to develop new predictive tools to optimize patient pain experience and analgesic use in the perioperative setting.NEW & NOTEWORTHY We present evidence that in a cohort of patients undergoing sigmoid colectomy, those homozygous for the NaV1.8 polymorphism (rs6795970) reported significantly lower abdominal pain scores than individuals with the homozygous wild-type or heterozygous genotype. In vitro electrophysiological recordings also suggest that the mutant NaV1.8 channel activates at more depolarizing potentials than the wild-type Na+ channel, characteristic of hypoactivity. This is the first report linking the rs6795970 mutation with postoperative abdominal pain in humans.


Assuntos
Dor Abdominal/genética , Colectomia , Fenômenos Eletrofisiológicos/fisiologia , Gânglios Espinais/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.8/fisiologia , Nociceptividade/fisiologia , Dor Pós-Operatória/genética , Gânglio Cervical Superior/metabolismo , Sistema Nervoso Simpático/fisiologia , Idoso , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Neurônios/fisiologia , Polimorfismo Genético , Ratos , Estudos Retrospectivos
11.
J Transl Med ; 17(1): 287, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455381

RESUMO

BACKGROUND: Experimental studies suggest that testosterone reduces the nociceptive response after inflammatory and neuropathic stimuli, however the underlying mechanisms have not been fully elucidated. The aims of this study were to evaluate the effect of peripheral blockade of testosterone on pain behaviour and on expression levels of the genes that encode the NaV1.7 and NaV1.8 channels, in dorsal root ganglia in an acute postoperative pain model, as well as the influence of androgen blockade on the expression of these genes. METHODS: Postoperative pain was induced by a plantar incision and the study group received flutamide to block testosterone receptor. The animals were submitted to behavioural evaluation preoperatively, 2 h after incision, and on the 1st, 2nd, 3rd and 7th postoperative days. Von Frey test was used to evaluate paw withdrawal threshold after mechanical stimuli and the guarding pain test to assess spontaneous pain. The expression of the genes encoding the sodium channels at the dorsal root ganglia was determined by real time quantitative polymerase chain reaction. RESULTS: Animals treated with flutamide presented lower paw withdrawal threshold at the 1st, 2nd, 3rd, and 7th postoperative days. The guarding pain test showed significant decrease in the flutamide group at 2 h and on the 3rd and 7th postoperative days. No difference was detected between the study and control groups for the gene expression. CONCLUSIONS: Our data suggest an antinociceptive effect of androgens following plantar incision. The expression of genes that encode voltage-gated sodium channels was not influenced by androgen blockade.


Assuntos
Androgênios/farmacologia , Comportamento Animal , Flutamida/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Dor Pós-Operatória/genética , Animais , Modelos Animais de Doenças , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo
12.
J Neurol Neurosurg Psychiatry ; 90(3): 342-352, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30554136

RESUMO

BACKGROUND: Neuropathic pain is common in peripheral neuropathy. Recent genetic studies have linked pathogenic voltage-gated sodium channel (VGSC) variants to human pain disorders. Our aims are to determine the frequency of SCN9A, SCN10A and SCN11A variants in patients with pure small fibre neuropathy (SFN), analyse their clinical features and provide a rationale for genetic screening. METHODS: Between September 2009 and January 2017, 1139 patients diagnosed with pure SFN at our reference centre were screened for SCN9A, SCN10A and SCN11A variants. Pathogenicity of variants was classified according to established guidelines of the Association for Clinical Genetic Science and frequencies were determined. Patients with SFN were grouped according to the VGSC variants detected, and clinical features were compared. RESULTS: Among 1139 patients with SFN, 132 (11.6%) patients harboured 73 different (potentially) pathogenic VGSC variants, of which 50 were novel and 22 were found in ≥ 1 patient. The frequency of (potentially) pathogenic variants was 5.1% (n=58/1139) for SCN9A, 3.7% (n=42/1139) for SCN10A and 2.9% (n=33/1139) for SCN11A. Only erythromelalgia-like symptoms and warmth-induced pain were significantly more common in patients harbouring VGSC variants. CONCLUSION: (Potentially) pathogenic VGSC variants are present in 11.6% of patients with pure SFN. Therefore, genetic screening of SCN9A, SCN10A and SCN11A should be considered in patients with pure SFN, independently of clinical features or underlying conditions.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Neuropatia de Pequenas Fibras/genética , Idoso , Feminino , Testes Genéticos , Variação Genética/genética , Humanos , Masculino , Pessoa de Meia-Idade , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Valor Preditivo dos Testes , Estudos Retrospectivos , Neuropatia de Pequenas Fibras/complicações , Neuropatia de Pequenas Fibras/diagnóstico
13.
Europace ; 21(9): 1410-1421, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31106349

RESUMO

AIMS: Brugada syndrome (BrS) is associated with a pronounced risk to develop sudden cardiac death (SCD). Up to 21% of patients are related to mutations in SCN5A. Studies identified SCN10A as a contributor of BrS. However, the investigation of the human cellular phenotype of BrS in the presence of SCN10A mutations remains lacking. The objective of this study was to establish a cellular model of BrS in presence of SCN10A mutations using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). METHODS AND RESULTS: Dermal fibroblasts obtained from a BrS patient suffering from SCD harbouring the SCN10A double variants (c.3803G>A and c.3749G>A) and three independent healthy control subjects were reprogrammed to hiPSCs. Human-induced pluripotent stem cells were differentiated into cardiomyocytes (hiPSC-CMs).The hiPSC-CMs from the BrS patient showed a significantly reduced peak sodium channel current (INa) and a significantly reduced ATX II (sea anemone toxin, an enhancer of late INa) sensitive as well as A-887826 (a blocker of SCN10A channel) sensitive late sodium channel current (INa) when compared with the healthy control hiPSC-CMs, indicating loss-of-function of sodium channels. Consistent with reduced INa the action potential amplitude and upstroke velocity (Vmax) were significantly reduced, which may contribute to arrhythmogenesis of BrS. Moreover, Ajmaline effects on action potentials were stronger in BrS-hiPSC-CMs than in healthy control cells. This is in agreement with the higher susceptibility of patients to sodium channel blocking drugs in unmasking BrS. CONCLUSION: Patient-specific hiPSC-CMs are able to recapitulate single-cell phenotype features of BrS with SCN10A mutations and may provide novel opportunities to further elucidate the cellular disease mechanism.


Assuntos
Potenciais de Ação/fisiologia , Síndrome de Brugada/genética , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Ajmalina/farmacologia , Síndrome de Brugada/metabolismo , Cardiotônicos/farmacologia , Estudos de Casos e Controles , Técnicas de Reprogramação Celular , Venenos de Cnidários/farmacologia , Morte Súbita Cardíaca , Humanos , Células-Tronco Pluripotentes Induzidas , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Morfolinas/farmacologia , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Técnicas de Patch-Clamp , Fenótipo , Taquicardia Ventricular , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
14.
Europace ; 21(10): 1550-1558, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31292628

RESUMO

AIMS: The Brugada syndrome (BrS) is an inherited disease associated with an increased risk of sudden cardiac death. Often, the genetic cause remains undetected. Perhaps due at least in part because the NaV1.8 protein is expressed more in both the central and peripheral nervous systems than in the heart, the SCN10A gene is not included in diagnostic arrhythmia/sudden death panels in the vast majority of cardiogenetics centres. METHODS AND RESULTS: Clinical characteristics were assessed in patients harboring either SCN5A or novel SCN10A variants. Genetic testing was performed using Next Generation Sequencing on genomic DNA. Clinical characteristics, including the arrhythmogenic substrate, in BrS patients harboring novel SCN10A variants and SCN5A variants are comparable. Clinical characteristics, including gender, age, personal history of cardiac arrest/syncope, spontaneous BrS electrocardiogram pattern, family history of sudden death, and arrhythmic substrate are not significantly different between probands harboring SCN10A or SCN5A variants. CONCLUSION: Future studies are warranted to further characterize the role of these specific SCN10A variants.


Assuntos
Síndrome de Brugada/genética , DNA/genética , Predisposição Genética para Doença , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Adolescente , Adulto , Idoso , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/metabolismo , Análise Mutacional de DNA , Eletrocardiografia , Feminino , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Adulto Jovem
15.
Bioorg Med Chem ; 27(1): 230-239, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30538065

RESUMO

The voltage gated sodium channel NaV1.8 has been postulated to play a key role in the transmission of pain signals. Core hopping from our previously reported phenylimidazole leads has allowed the identification of a novel series of benzimidazole NaV1.8 blockers. Subsequent optimization allowed the identification of compound 9, PF-06305591, as a potent, highly selective blocker with an excellent preclinical in vitro ADME and safety profile.


Assuntos
Benzimidazóis/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Benzimidazóis/síntese química , Benzimidazóis/química , Benzimidazóis/farmacocinética , Desenho de Fármacos , Células HEK293 , Humanos , Estrutura Molecular , Solubilidade , Relação Estrutura-Atividade , Bloqueadores do Canal de Sódio Disparado por Voltagem/síntese química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética
16.
Cardiovasc Drugs Ther ; 33(6): 649-660, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31916131

RESUMO

PURPOSE: Several studies have indicated a potential role for SCN10A/NaV1.8 in modulating cardiac electrophysiology and arrhythmia susceptibility. However, by which mechanism SCN10A/NaV1.8 impacts on cardiac electrical function is still a matter of debate. To address this, we here investigated the functional relevance of NaV1.8 in atrial and ventricular cardiomyocytes (CMs), focusing on the contribution of NaV1.8 to the peak and late sodium current (INa) under normal conditions in different species. METHODS: The effects of the NaV1.8 blocker A-803467 were investigated through patch-clamp analysis in freshly isolated rabbit left ventricular CMs, human left atrial CMs and human-induced pluripotent stem cell-derived CMs (hiPSC-CMs). RESULTS: A-803467 treatment caused a slight shortening of the action potential duration (APD) in rabbit CMs and hiPSC-CMs, while it had no effect on APD in human atrial cells. Resting membrane potential, action potential (AP) amplitude, and AP upstroke velocity were unaffected by A-803467 application. Similarly, INa density was unchanged after exposure to A-803467 and NaV1.8-based late INa was undetectable in all cell types analysed. Finally, low to absent expression levels of SCN10A were observed in human atrial tissue, rabbit ventricular tissue and hiPSC-CMs. CONCLUSION: We here demonstrate the absence of functional NaV1.8 channels in non-diseased atrial and ventricular CMs. Hence, the association of SCN10A variants with cardiac electrophysiology observed in, e.g. genome wide association studies, is likely the result of indirect effects on SCN5A expression and/or NaV1.8 activity in cell types other than CMs.


Assuntos
Apêndice Atrial/metabolismo , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/deficiência , Potenciais de Ação , Animais , Apêndice Atrial/citologia , Apêndice Atrial/efeitos dos fármacos , Linhagem Celular , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cinética , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.8/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Coelhos , Especificidade da Espécie , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
17.
Mol Pain ; 14: 1744806918763275, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29448912

RESUMO

Expression of Nav1.8, encoded by SCN10A, can affect pain transmission and thus mediate the human pain phenotype. In the current study, we assessed whether the variant rs6801957, located in the SCN10A enhancer region, may have the potential to affect human pain. Through dual-luciferase reporter assays in 293T cells, we found that the SCN10A enhancer A (Enh-A) increased the activity of the SCN10A promoter ( P < 0.05). Additionally, in a cohort of 309 healthy women, mutant rs6801957 A/A was found to have a significant association with decreased human experimental mechanical pain sensitivity ( P < 0.05). We then found that mutant genotype A/A suppressed the increased effect of Enh-A compared with wild-type G/G ( P < 0.05). The association between rs6801957 and human experimental mechanical pain sensitivity was further validated in a larger cohort of 1005 women ( P < 0.05). In conclusion, these results demonstrated that the variant rs6801957 and Enh-A may affect SCN10A gene expression and play an important role in human mechanical pain sensitivity.


Assuntos
Elementos Facilitadores Genéticos/genética , Predisposição Genética para Doença , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Dor/genética , Polimorfismo de Nucleotídeo Único/genética , Sequência de Bases , Sequência Conservada , Feminino , Estudos de Associação Genética , Humanos , Masculino , Regiões Promotoras Genéticas , Adulto Jovem
18.
Clin Genet ; 93(4): 741-751, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28407228

RESUMO

BACKGROUND: Long QT syndrome (LQT) is a pro-arrhythmogenic condition with life-threatening complications. Fifteen genes have been associated with congenital LQT, however, the genetic causes remain unknown in more than 20% of cases. MATERIALS AND METHODS: Eighteen patients with history of palpitations, pre-syncope, syncope and prolonged QT were referred to the Yale Cardiovascular Genetics Program. All subjects underwent whole-exome sequencing (WES) followed by confirmatory Sanger sequencing. Mutation burden analysis was carried out using WES data from 16 subjects with no identifiable cause of LQT. RESULTS: Deleterious and novel SCN10A mutations were identified in 3 of the 16 patients (19%) with idiopathic LQT. These included 2 frameshifts and 1 missense variants (p.G810fs, p.R1259Q, and p.P1877fs). Further analysis identified 2 damaging SCN10A mutations with allele frequencies of approximately 0.2% (p.R14L and p.R1268Q) in 2 independent cases. None of the SCN10A mutation carriers had mutations in known arrhythmia genes. Damaging SCN10A mutations (p.R209H and p.R485C) were also identified in the 2 subjects on QT prolonging medications. CONCLUSION: Our findings implicate SCN10A in LQT. The presence of frameshift mutations suggests loss-of-function as the underlying disease mechanism. The common association with atrial fibrillation suggests a unique mechanism of disease for this LQT gene.


Assuntos
Arritmias Cardíacas/genética , Síndrome do QT Longo/genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Síncope/genética , Adulto , Idoso , Arritmias Cardíacas/fisiopatologia , Análise Mutacional de DNA , Feminino , Mutação da Fase de Leitura , Frequência do Gene , Predisposição Genética para Doença , Testes Genéticos , Humanos , Síndrome do QT Longo/fisiopatologia , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Síncope/fisiopatologia
19.
J Electrocardiol ; 51(5): 809-813, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30177317

RESUMO

INTRODUCTION: Sudden cardiac death is an important cause of mortality in the general population. It represents an important challenge for clinicians, often being the only symptom of a broad spectrum of cardiac pathologies and inherited heart conditions. Early repolarization syndrome and Brugada syndrome are part of the wider "J-wave" syndrome, which may also include the short QT syndrome as a third factor of an ionic channel imbalance in the arrhythmogenic landscape. CASE PRESENTATION: We describe the case of a woman struck down by sudden cardiac death, with short QT and early repolarization, in which we found an extremely rare and putatively pathogenic heterozygous variant in the SCN10A gene. Variants involving SCN10A, which encodes a voltage-gated sodium channel, were already associated with alterations of cardiac conduction parameters and the cardiac rhythm disorder, thereby influencing the cardiac physiology and predisposing to arrhythmia. CONCLUSION: We underline the role of genetic predisposition to sudden cardiac death and, for the first time, suggest a possible environmental effect, such as a pharmacological therapy in the setting of sudden death, with the purpose to increase awareness in clinical practice.


Assuntos
Arritmias Cardíacas/genética , Morte Súbita Cardíaca/etiologia , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Arritmias Cardíacas/complicações , Inibidores de Ciclo-Oxigenase 2/efeitos adversos , Eletrocardiografia , Etoricoxib/efeitos adversos , Feminino , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Canal de Sódio Disparado por Voltagem NAV1.8/ultraestrutura , Conformação Proteica , Análise de Sequência de DNA
20.
Kardiologiia ; (4): 53-59, 2018 Apr.
Artigo em Russo | MEDLINE | ID: mdl-29782260

RESUMO

PURPOSE: To study association of rs6795970 polymorphism of SCN10A gene with development of idiopathic sick sinus syndrome (ISSS). MATERIALS AND METHODS: We examined 109 patients with ISSS, 59 their healthy 1­st-, 2­nd-, and 3­rd-degree relatives, and 630 controls. Patients with ISSS were divided into subgroups according to gender and clinical variant of the disease. All patients underwent cardiologic examination and molecular genetic testing of DNA. RESULTS: We revealed significant preponderance of homozygous genotype with rare allele of the studied gene among patients with ISSS compared with control group. In addition, this genotype significantly prevailed among men with SSSU in comparison with the control group. CONCLUSION: Genotype AA of the SCN10A gene is associated with a predisposition to the development of ISSS.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.8/genética , Síndrome do Nó Sinusal , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Síndrome do Nó Sinusal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA