Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105583, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141770

RESUMO

Membrane polyphosphoinositides (PPIs) are lipid-signaling molecules that undergo metabolic turnover and influence a diverse range of cellular functions. PPIs regulate the activity and/or spatial localization of a number of actin-binding proteins (ABPs) through direct interactions; however, it is much less clear whether ABPs could also be an integral part in regulating PPI signaling. In this study, we show that ABP profilin1 (Pfn1) is an important molecular determinant of the cellular content of PI(4,5)P2 (the most abundant PPI in cells). In growth factor (EGF) stimulation setting, Pfn1 depletion does not impact PI(4,5)P2 hydrolysis but enhances plasma membrane (PM) enrichment of PPIs that are produced downstream of activated PI3-kinase, including PI(3,4,5)P3 and PI(3,4)P2, the latter consistent with increased PM recruitment of SH2-containing inositol 5' phosphatase (SHIP2) (a key enzyme for PI(3,4)P2 biosynthesis). Although Pfn1 binds to PPIs in vitro, our data suggest that Pfn1's affinity to PPIs and PM presence in actual cells, if at all, is negligible, suggesting that Pfn1 is unlikely to directly compete with SHIP2 for binding to PM PPIs. Additionally, we provide evidence for Pfn1's interaction with SHIP2 in cells and modulation of this interaction upon EGF stimulation, raising an alternative possibility of Pfn1 binding as a potential restrictive mechanism for PM recruitment of SHIP2. In conclusion, our findings challenge the dogma of Pfn1's binding to PM by PPI interaction, uncover a previously unrecognized role of Pfn1 in PI(4,5)P2 homeostasis and provide a new mechanistic avenue of how an ABP could potentially impact PI3K signaling byproducts in cells through lipid phosphatase control.


Assuntos
Fosfatidilinositóis , Profilinas , Fator de Crescimento Epidérmico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Fosfatidilinositóis/metabolismo , Humanos , Células HEK293 , Profilinas/metabolismo
2.
Mol Cell ; 68(3): 566-580.e10, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29056325

RESUMO

The PI3K signaling pathway regulates cell growth and movement and is heavily mutated in cancer. Class I PI3Ks synthesize the lipid messenger PI(3,4,5)P3. PI(3,4,5)P3 can be dephosphorylated by 3- or 5-phosphatases, the latter producing PI(3,4)P2. The PTEN tumor suppressor is thought to function primarily as a PI(3,4,5)P3 3-phosphatase, limiting activation of this pathway. Here we show that PTEN also functions as a PI(3,4)P2 3-phosphatase, both in vitro and in vivo. PTEN is a major PI(3,4)P2 phosphatase in Mcf10a cytosol, and loss of PTEN and INPP4B, a known PI(3,4)P2 4-phosphatase, leads to synergistic accumulation of PI(3,4)P2, which correlated with increased invadopodia in epidermal growth factor (EGF)-stimulated cells. PTEN deletion increased PI(3,4)P2 levels in a mouse model of prostate cancer, and it inversely correlated with PI(3,4)P2 levels across several EGF-stimulated prostate and breast cancer lines. These results point to a role for PI(3,4)P2 in the phenotype caused by loss-of-function mutations or deletions in PTEN.


Assuntos
Neoplasias da Mama/enzimologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositóis/metabolismo , Neoplasias da Próstata/enzimologia , Sistemas do Segundo Mensageiro , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/farmacologia , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Fenótipo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Fatores de Tempo
3.
Acta Neuropathol ; 147(1): 94, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833073

RESUMO

A recent large genome-wide association study has identified EGFR (encoding the epidermal growth factor EGFR) as a new genetic risk factor for late-onset AD. SHIP2, encoded by INPPL1, is taking part in the signalling and interactome of several growth factor receptors, such as the EGFR. While INPPL1 has been identified as one of the most significant genes whose RNA expression correlates with cognitive decline, the potential alteration of SHIP2 expression and localization during the progression of AD remains largely unknown. Here we report that gene expression of both EGFR and INPPL1 was upregulated in AD brains. SHIP2 immunoreactivity was predominantly detected in plaque-associated astrocytes and dystrophic neurites and its increase was correlated with amyloid load in the brain of human AD and of 5xFAD transgenic mouse model of AD. While mRNA of INPPL1 was increased in AD, SHIP2 protein undergoes a significant solubility change being depleted from the soluble fraction of AD brain homogenates and co-enriched with EGFR in the insoluble fraction. Using FRET-based flow cytometry biosensor assay for tau-tau interaction, overexpression of SHIP2 significantly increased the FRET signal while siRNA-mediated downexpression of SHIP2 significantly decreased FRET signal. Genetic association analyses suggest that some variants in INPPL1 locus are associated with the level of CSF pTau. Our data support the hypothesis that SHIP2 is an intermediate key player of EGFR and AD pathology linking amyloid and tau pathologies in human AD.


Assuntos
Doença de Alzheimer , Encéfalo , Progressão da Doença , Receptores ErbB , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expressão Gênica , Camundongos Transgênicos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Solubilidade , Proteínas tau/metabolismo , Proteínas tau/genética
4.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791291

RESUMO

The src homology 2 domain-containing inositol 5-phosphatases SHIP1 and SHIP2 are two proteins involved in intracellular signaling pathways and have been linked to the pathogenesis of several diseases. Both protein paralogs are well known for their involvement in the formation of various kinds of cancer. SHIP1, which is expressed predominantly in hematopoietic cells, has been implicated as a tumor suppressor in leukemogenesis especially in myeloid leukemia, whereas SHIP2, which is expressed ubiquitously, has been implicated as an oncogene in a wider variety of cancer types and is suggested to be involved in the process of metastasis of carcinoma cells. However, there are numerous other diseases, such as inflammatory diseases as well as allergic responses, Alzheimer's disease, and stroke, in which SHIP1 can play a role. Moreover, SHIP2 overexpression was shown to correlate with opsismodysplasia and Alzheimer's disease, as well as metabolic diseases. The SHIP1-inhibitor 3-α-aminocholestane (3AC), and SHIP1-activators, such as AQX-435 and AQX-1125, and SHIP2-inhibitors, such as K161 and AS1949490, have been developed and partly tested in clinical trials, which indicates the importance of the SHIP-paralogs as possible targets in the therapy of those diseases. The aim of this article is to provide an overview of the current knowledge about the involvement of SHIP proteins in the pathogenesis of cancer and other human diseases and to create awareness that SHIP1 and SHIP2 are more than just tumor suppressors and oncogenes.


Assuntos
Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Humanos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Domínios de Homologia de src , Transdução de Sinais , Inositol Polifosfato 5-Fosfatases/metabolismo , Inositol Polifosfato 5-Fosfatases/genética
5.
Molecules ; 29(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474536

RESUMO

The lipid phosphatase Ship2 interacts with the EphA2 receptor by forming a heterotypic Sam (sterile alpha motif)-Sam complex. Ship2 works as a negative regulator of receptor endocytosis and consequent degradation, and anti-oncogenic effects in cancer cells should be induced by hindering its association with EphA2. Herein, a computational approach is presented to investigate the relationship between Ship2-Sam/EphA2-Sam interaction and cancer onset and further progression. A search was first conducted through the COSMIC (Catalogue of Somatic Mutations in Cancer) database to identify cancer-related missense mutations positioned inside or close to the EphA2-Sam and Ship2-Sam reciprocal binding interfaces. Next, potential differences in the chemical-physical properties of mutant and wild-type Sam domains were evaluated by bioinformatics tools based on analyses of primary sequences. Three-dimensional (3D) structural models of mutated EphA2-Sam and Ship2-Sam domains were built as well and deeply analysed with diverse computational instruments, including molecular dynamics, to classify potentially stabilizing and destabilizing mutations. In the end, the influence of mutations on the EphA2-Sam/Ship2-Sam interaction was studied through docking techniques. This in silico approach contributes to understanding, at the molecular level, the mutation/cancer relationship by predicting if amino acid substitutions could modulate EphA2 receptor endocytosis.


Assuntos
Neoplasias , Receptor EphA2 , Motivo Estéril alfa , Receptor EphA2/química , Ligação Proteica , Mutação , Monoéster Fosfórico Hidrolases/metabolismo , Lipídeos
6.
Molecules ; 28(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38138538

RESUMO

The SH2-containing inositol polyphosphate 5-phosphatase 1 (SHIP1) enzyme opposes the activity of PI3K and therefore is of interest in the treatment of inflammatory disorders. Recent results also indicate that SHIP1 promotes phagolysosomal degradation of lipids by microglia, suggesting that the enzyme may be a target for the treatment of Alzheimer's disease. Therefore, small molecules that increase SHIP1 activity may have benefits in these areas. Recently we discovered a bis-sulfonamide that increases the enzymatic activity of SHIP1. A series of similar SHIP1 activators have been synthesized and evaluated to determine structure-activity relationships and improve in vivo stability. Some new analogs have now been found with improved potency. In addition, both the thiophene and the thiomorpholine in the parent structure can be replaced by groups without a low valent sulfur atom, which provides a way to access activators that are less prone to oxidative degradation.


Assuntos
Monoéster Fosfórico Hidrolases , Monoéster Fosfórico Hidrolases/metabolismo
7.
FASEB J ; 35(8): e21815, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34314064

RESUMO

The Src homology 2 containing inositol 5-phosphatase 2 (SHIP2) is a large multidomain enzyme that catalyzes the dephosphorylation of the phospholipid phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P3 ) to form PI(3,4)P2 . PI(3,4,5)P3 is a key lipid second messenger controlling the recruitment of signaling proteins to the plasma membrane, thereby regulating a plethora of cellular events, including proliferation, growth, apoptosis, and cytoskeletal rearrangements. SHIP2, alongside PI3K and PTEN, regulates PI(3,4,5)P3 levels at the plasma membrane and has been heavily implicated in serious diseases such as cancer and type 2 diabetes; however, many aspects of its regulation mechanism remain elusive. We recently reported an activating effect of the SHIP2 C2 domain and here we describe an additional layer of regulation via the pleckstrin homology-related (PHR) domain. We show a phosphoinositide-induced transition to a high activity state of the enzyme that increases phosphatase activity up to 10-15 fold. We further show that PI(3,4)P2 directly interacts with the PHR domain to trigger this allosteric activation. Modeling of the PHR-phosphatase-C2 region of SHIP2 on the membrane suggests no major inter-domain interactions with the PHR domain, but close contacts between the two linkers offer a possible path of allosteric communication. Together, our data show that the PHR domain acts as an allosteric module regulating the catalytic activity of SHIP2 in response to specific phosphoinositide levels in the cell membrane.


Assuntos
Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Domínios de Homologia à Plecstrina , Regulação Alostérica , Biocatálise , Humanos , Modelos Moleculares , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo
8.
Bioorg Chem ; 122: 105680, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248981

RESUMO

The lipid phosphatase Ship2 binds the EphA2 receptor through a heterotypic Sam-Sam (Sterile alpha motif) interaction. Inhibitors of the Ship2-Sam/EphA2-Sam complex hold a certain potential as novel anticancer agents. The previously reported "KRI3" peptide binds Ship2-Sam working as a weak antagonist of the EphA2-Sam/Ship2-Sam interaction. Herein, the design and functional evaluation of KRI3 analogues, both linear and cyclic, are described. A multidisciplinary study was conducted through computational docking techniques, and conformational analyses by CD and NMR spectroscopies. The ability of new peptides to bind Ship2-Sam was analysed by NMR, MST and SPR assays. Studies on linear KRI3 analogues pointed out that aromatic interactions through tyrosines are important for the association with Ship2-Sam whereas, an increase of the net positive charge of the sequence or peptide cyclization through a disulfide bridge can favour unspecific interactions without a substantial improvement of the binding affinity to Ship2-Sam. Interestingly, preliminary cell-based assays demonstrated KRI3 cellular uptake even without the conjugation to a cell penetrating sequence with a main cytosolic localization. This work highlights important features of the KRI3 peptide that can be further exploited to design analogues able to hamper Sam-Sam interactions driven by electrostatic contacts.


Assuntos
Receptor EphA2 , Motivo Estéril alfa , Ligantes , Espectroscopia de Ressonância Magnética , Peptídeos/química , Receptor EphA2/química
9.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500543

RESUMO

Inhibition of phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase (SHIP) with small molecule inhibitors leads to apoptosis in tumor cells. Inhibitors that target both SHIP1 and SHIP2 (pan-SHIP1/2 inhibitors) may have benefits in these areas since paralog compensation is not possible when both SHIP paralogs are being inhibited. A series of tryptamine-based pan-SHIP1/2 inhibitors have been synthesized and evaluated for their ability to inhibit the SHIP paralogs. The most active compounds were also evaluated for their effects on cancer cell lines.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Monoéster Fosfórico Hidrolases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Fosforilação , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular
10.
Arch Biochem Biophys ; 697: 108667, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33181128

RESUMO

Cell apoptosis is an important process that occurs during development or in response to stress stimuli such as oxidative stress. The serine-threonine kinase Akt enhances survival and suppress apoptosis. SHIP2 is known as a negative regulator of Akt. In addition to its lipid 5'-phosphatase activity, SHIP2 interacts and signals as a scaffolding complex with several proteins. Several findings have pointed out a possible role of SHIP2 in apoptosis regulation. However, the molecular mechanisms behind remain unknown. Using embryonic fibroblast lacking the lipid 5'-phosphatase domain as a genetic model system and human liver cancer cells treated with SHIP2 inhibitor (AS1949490), as a pharmacological model system. We provide the first evidence that SHIP2 regulates apoptosis independently of its 5'-phosphates activity. Indeed, absence of the 5'-phosphatase domain of SHIP2 did not prevent H2O2-induced apoptosis in fibroblasts. Whereas chemical inactivation or RNAi knockdown of SHIP2 blocked H2O2-induced apoptosis in HepG2 cells. We found that suppression of apoptosis upon SHIP2 inhibition is PI3K/Akt independent but rather MAP kinase dependent. In addition, we found that AS1949490 altered both 5'-phosphatase and scaffolding function of SHIP2. Indeed, AS1949490 mediated SHIP2 inhibition promotes protein complex formation of SHIP2 together with non-receptor tyrosine kinase SRC and ABL which in turn enhances PI3K/Akt and MAP kinase pathways activation. Dual inhibition of SRC/ABL blocked activation of both pathways upon SHIP2 inhibition and H2O2 treatment. Altogether, these findings indicate that SHIP2 protein play a determinant role in H2O2-induced apoptosis.


Assuntos
Apoptose , Estresse Oxidativo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Apoptose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Peróxido de Hidrogênio/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tiofenos/farmacologia
11.
Int J Cancer ; 146(9): 2563-2575, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498891

RESUMO

Metastasis is the leading cause of death for non-small cell lung cancer (NSCLC) patients. However, how lung cancer cells invade blood vessels during metastasis remains unclear. Here, based on bioinformatics analyses, we found that PLEK2 might regulate NSCLC migration and vascular invasion. As little is known about the function of PLEK2 in NSCLC, we aimed to clarify this. We demonstrated that PLEK2 was significantly upregulated in transforming growth factor beta 1 (TGF-ß1)-treated NSCLC cells through ELK1 transcriptional activation, highly expressed in NSCLC tissues, and negatively correlated with NSCLC overall survival. Meanwhile, PLEK2 overexpression significantly promoted NSCLC epithelial-to-mesenchymal transition (EMT) and migration, human lung microvascular endothelial cells endothelial-to-mesenchymal transition (EndoMT), and the destruction of vascular endothelial barriers. Moreover, PLEK2 knockdown inhibited TGF-ß1-induced EMT and EndoMT. Furthermore, PLEK2 was found to directly interact with SHIP2 and target it for ubiquitination and degradation in NSCLC cells. Next, we confirmed that SHIP2 overexpression inhibits NSCLC EMT, migration and invasion and showed that PLEK2 overexpression can activate SHIP2-associated TGF-ß/PI3K/AKT signaling. Our results suggest that PLEK2 could be a novel prognostic marker and potential therapeutic target for NSCLC metastasis and vascular invasion.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/secundário , Endotélio Vascular/patologia , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/patologia , Proteínas de Membrana/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Ubiquitina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células , Endotélio Vascular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Nus , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Prognóstico , Proteólise , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Sci ; 111(5): 1596-1606, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32198795

RESUMO

Chronic infection with Helicobacter pylori cagA-positive strains is causally associated with the development of gastric diseases, most notably gastric cancer. The cagA-encoded CagA protein, which is injected into gastric epithelial cells by bacterial type IV secretion, undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) segments (EPIYA-A, EPIYA-B, EPIYA-C, and EPIYA-D), which are present in various numbers and combinations in its C-terminal polymorphic region, thereby enabling CagA to promiscuously interact with SH2 domain-containing host cell proteins, including the prooncogenic SH2 domain-containing protein tyrosine phosphatase 2 (SHP2). Perturbation of host protein functions by aberrant complex formation with CagA has been considered to contribute to the development of gastric cancer. Here we show that SHIP2, an SH2 domain-containing phosphatidylinositol 5'-phosphatase, is a hitherto undiscovered CagA-binding host protein. Similar to SHP2, SHIP2 binds to the Western CagA-specific EPIYA-C segment or East Asian CagA-specific EPIYA-D segment through the SH2 domain in a tyrosine phosphorylation-dependent manner. In contrast to the case of SHP2, however, SHIP2 binds more strongly to EPIYA-C than to EPIYA-D. Interaction with CagA tethers SHIP2 to the plasma membrane, where it mediates production of phosphatidylinositol 3,4-diphosphate [PI(3,4)P2 ]. The CagA-SHIP2 interaction also potentiates the morphogenetic activity of CagA, which is caused by CagA-deregulated SHP2. This study indicates that initially delivered CagA interacts with SHIP2 and thereby strengthens H. pylori-host cell attachment by altering membrane phosphatidylinositol compositions, which potentiates subsequent delivery of CagA that binds to and thereby deregulates the prooncogenic phosphatase SHP2.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Motivos de Aminoácidos , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Linhagem Celular , Membrana Celular/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosforilação , Ligação Proteica , Transporte Proteico , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Domínios de Homologia de src
13.
J Cell Sci ; 131(16)2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012834

RESUMO

Metastasis of breast cancer cells to distant organs is responsible for ∼50% of breast cancer-related deaths in women worldwide. SHIP2 (also known as INPPL1) is a phosphoinositide 5-phosphatase for phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2]. Here we show, through depletion of SHIP2 in triple negative MDA-MB-231 cells and the use of SHIP2 inhibitors, that cell migration appears to be positively controlled by SHIP2. The effect of SHIP2 on migration, as observed in MDA-MB-231 cells, appears to be mediated by PI(3,4)P2. Adhesion on fibronectin is always increased in SHIP2-depleted cells. Apoptosis measured in MDA-MB-231 cells is also increased in SHIP2-depleted cells as compared to control cells. In xenograft mice, SHIP2-depleted MDA-MB-231 cells form significantly smaller tumors than those formed by control cells and less metastasis is detected in lung sections. Our data reveal a general role for SHIP2 in the control of cell migration in breast cancer cells and a second messenger role for PI(3,4)P2 in the migration mechanism. In MDA-MB-231 cells, SHIP2 has a function in apoptosis in cells incubated in vitro and in mouse tumor-derived cells, which could account for its role on tumor growth determined in vivo.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/antagonistas & inibidores , Animais , Movimento Celular/genética , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Biochem Soc Trans ; 48(1): 291-300, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32049315

RESUMO

Modulating the activity of the Src Homology 2 (SH2) - containing Inositol 5'-Phosphatase (SHIP) enzyme family with small molecule inhibitors provides a useful and unconventional method of influencing cell signaling in the PI3K pathway. The development of small molecules that selectively target one of the SHIP paralogs (SHIP1 or SHIP2) as well as inhibitors that simultaneously target both enzymes have provided promising data linking the phosphatase activity of the SHIP enzymes to disorders and disease states that are in dire need of new therapeutic targets. These include cancer, immunotherapy, diabetes, obesity, and Alzheimer's disease. In this mini-review, we will provide a brief overview of research in these areas that support targeting SHIP1, SHIP2 or both enzymes for therapeutic purposes.


Assuntos
Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Descoberta de Drogas , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo
15.
Int J Mol Sci ; 21(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183047

RESUMO

Previous studies have shown reduced expression of Src homology 2-containing inositol 5-phosphatase 2 (SHIP2) and its tumor-suppressive role in gastric cancer (GC). However, the precise role of SHIP2 in the migration and invasion of GC cells remains unclear. Here, an IQ motif containing the GTPase-activating protein 2 (IQGAP2) as a SHIP2 binding partner, was screened and identified by co-immunoprecipitation and mass spectrometry studies. While IQGAP2 ubiquitously expressed in GC cells, IQGAP2 and SHIP2 co-localized in the cytoplasm of GC cells, and this physical association was confirmed by the binding of IQGAP2 to PRD and SAM domains of SHIP2. The knockdown of either SHIP2 or IQGAP2 promoted cell migration and invasion by inhibiting SHIP2 phosphatase activity, activating Akt and subsequently increasing epithelial-mesenchymal transition (EMT). Furthermore, knockdown of IQGAP2 in SHIP2-overexpressing GC cells reversed the inhibition of cell migration and invasion by SHIP2 induction, which was associated with the suppression of elevated SHIP2 phosphatase activity. Moreover, the deletion of PRD and SAM domains of SHIP2 abrogated the interaction and restored cell migration and invasion. Collectively, these results indicate that IQGAP2 interacts with SHIP2, leading to the increment of SHIP2 phosphatase activity, and thereby inhibiting the migration and invasion of GC cells via the inactivation of Akt and reduction in EMT.


Assuntos
Movimento Celular , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Neoplasias Gástricas/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Células HEK293 , Humanos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Ligação Proteica , Proteínas Ativadoras de ras GTPase/genética
16.
Int J Mol Sci ; 21(23)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276499

RESUMO

The phosphoinositide 3-kinase (PI3K)/AKT signalling pathway is hyperactivated in ~70% of breast cancers. Class I PI3K generates PtdIns(3,4,5)P3 at the plasma membrane in response to growth factor stimulation, leading to AKT activation to drive cell proliferation, survival and migration. PTEN negatively regulates PI3K/AKT signalling by dephosphorylating PtdIns(3,4,5)P3 to form PtdIns(4,5)P2. PtdIns(3,4,5)P3 can also be hydrolysed by the inositol polyphosphate 5-phosphatases (5-phosphatases) to produce PtdIns(3,4)P2. Interestingly, while PTEN is a bona fide tumour suppressor and is frequently mutated/lost in breast cancer, 5-phosphatases such as PIPP, SHIP2 and SYNJ2, have demonstrated more diverse roles in regulating mammary tumourigenesis. Reduced PIPP expression is associated with triple negative breast cancers and reduced relapse-free and overall survival. Although PIPP depletion enhances AKT phosphorylation and supports tumour growth, this also inhibits cell migration and metastasis in vivo, in a breast cancer oncogene-driven murine model. Paradoxically, SHIP2 and SYNJ2 are increased in primary breast tumours, which correlates with invasive disease and reduced survival. SHIP2 or SYNJ2 overexpression promotes breast tumourigenesis via AKT-dependent and independent mechanisms. This review will discuss how PTEN, PIPP, SHIP2 and SYNJ2 distinctly regulate multiple functional targets, and the mechanisms by which dysregulation of these distinct phosphoinositide phosphatases differentially affect breast cancer progression.


Assuntos
Neoplasias da Mama/metabolismo , Suscetibilidade a Doenças , Metabolismo dos Lipídeos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Neoplasias da Mama/etiologia , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Feminino , Humanos , Inositol Polifosfato 5-Fosfatases/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
17.
Bioorg Chem ; 84: 434-443, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30576907

RESUMO

EphA2 receptor plays a critical and debatable function in cancer and is considered a target in drug discovery. Lately, there has been a growing interest in its cytosolic C-terminal SAM domain (EphA2-SAM) as it engages protein modulators of receptor endocytosis and stability. Interestingly, EphA2-SAM binds the SAM domain from the lipid phosphatase Ship2 (Ship2-SAM) mainly producing pro-oncogenic outcomes. In an attempt to discover novel inhibitors of the EphA2-SAM/Ship2-SAM complex with possible anticancer properties, we focused on the central region of Ship2-SAM (known as Mid-Loop interface) responsible for its binding to EphA2-SAM. Starting from the amino acid sequence of the Mid-Loop interface virtual peptide libraries were built through ad hoc inserted mutations with either l- or d- amino acids and screened against EphA2-SAM by docking techniques. A few virtual hits were synthesized and experimentally tested by a variety of direct and competition-type interaction assays relying on NMR (Nuclear Magnetic Resonance), SPR (Surface Plasmon Resonance), MST (Microscale Thermophoresis) techniques. These studies guided the discovery of an original EphA2-SAM ligand antagonist of its interaction with Ship2-SAM.


Assuntos
Desenho de Fármacos , Simulação de Acoplamento Molecular , Peptídeos/química , Receptor EphA2/química , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Ligantes , Ressonância Magnética Nuclear Biomolecular , Biblioteca de Peptídeos , Peptídeos/sangue , Peptídeos/metabolismo , Estabilidade Proteica , Receptor EphA2/metabolismo , Motivo Estéril alfa
18.
Int J Mol Sci ; 20(11)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212584

RESUMO

Insulin signaling is mediated by a highly integrated network that controls glucose metabolism, protein synthesis, cell growth, and differentiation. Our previous work indicates that the insulin receptor tyrosine kinase substrate (IRTKS), also known as BAI1-associated protein 2-like 1 (BAIAP2L1), is a novel regulator of insulin network, but the mechanism has not been fully studied. In this work we reveal that IRTKS co-localizes with Src homology (SH2) containing inositol polyphosphate 5-phosphatase-2 (SHIP2), and the SH3 domain of IRTKS directly binds to SHIP2's catalytic domain INPP5c. IRTKS suppresses SHIP2 phosphatase to convert phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P3, PIP3) to phosphatidylinositol (3,4) bisphosphate (PI(3,4)P2). IRTKS-knockout significantly increases PI(3,4)P2 level and decreases cellular PI(3,4,5)P3 content. Interestingly, the interaction between IRTKS and SHIP2 is dynamically regulated by insulin, which feeds back and affects the tyrosine phosphorylation of IRTKS. Furthermore, IRTKS overexpression elevates PIP3, activates the AKT-mTOR signaling pathway, and increases cell proliferation. Thereby, IRTKS not only associates with insulin receptors to activate PI3K but also interacts with SHIP2 to suppress its activity, leading to PIP3 accumulation and the activation of the AKT-mTOR signaling pathway to modulate cell proliferation.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células HEK293 , Células Hep G2 , Humanos , Imunoprecipitação , Insulina/metabolismo , Proteínas dos Microfilamentos/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Monoéster Fosfórico Hidrolases/genética , Fosforilação/genética , Fosforilação/fisiologia , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
19.
J Cell Biochem ; 119(2): 2248-2257, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28857346

RESUMO

Osteosarcoma is a malignant tumor of the skeletal system. The zinc finger transcription factor ZIC2 has been reported to be highly expressed in human cancers. The present study evaluated the effects of ZIC2 and the possible underlying mechanisms in the human osteosarcoma cells. The expression levels of ZIC2 in human fetal osteoblastic cell line (hFOB1.19), osteosarcoma cell lines (U-2OS, SaoS2, and MG63), normal bone tissue, and osteosarcoma tumor were analyzed by Western blot, and real-time quantitative RT-PCR (qRT-PCR). Osteosarcoma cells with either overexpressed ZIC2 or suppressed ZIC2 were analyzed to determine cell viability, colony formation, and cell invasion. The expressions of SHIP2 and PI3K/AKT signal pathway-related proteins were analyzed by Western blot and qRT-PCR. We first showed that ZIC2 is highly expressed in osteosarcoma cells and tissues. Then we demonstrated that overexpression of ZIC2 promoted viability, migration, and invasion of osteosarcoma cells, whereas suppression of ZIC2 showed opposite effects. Furthermore, SHIP2 expression was negatively regulated by ZIC2. Importantly, ZIC2 overexpression activated the PI3K/AKT signal pathway; however, overexpressed SHIP2 inhibited these effects. Lastly, we showed that activation of the PI3K/AKT signal pathway is essential for the effects of ZIC2 on osteosarcoma cells, as the effects of ZIC2 on the osteosarcoma cells were reversed by a PI3K/AKT inhibitor. Overall, ZIC2 is highly expressed in osteosarcoma cells and tissues, and its overexpression promotes viability, invasion of osteosarcoma cells via SHIP2 suppression, and PI3K/AKT activation. Thus, ZIC2 can be considered as a novel drug target for osteosarcoma management.


Assuntos
Neoplasias Ósseas/genética , Proteínas Nucleares/genética , Osteossarcoma/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fatores de Transcrição/genética , Regulação para Cima , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Proteínas Nucleares/metabolismo , Osteossarcoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
20.
J Cell Sci ; 129(6): 1101-14, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26826186

RESUMO

Phosphoinositides, particularly phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], are recognized by SHIP2 (also known as INPPL1) a member of the inositol polyphosphate 5-phosphatase family. SHIP2 dephosphorylates PI(3,4,5)P3 to form PI(3,4)P2; the latter interacts with specific target proteins (e.g. lamellipodin). Although the preferred SHIP2 substrate is PI(3,4,5)P3, PI(4,5)P2 can also be dephosphorylated by this enzyme to phosphatidylinositol 4-phosphate (PI4P). Through depletion of SHIP2 in the glioblastoma cell line 1321 N1, we show that SHIP2 inhibits cell migration. In different glioblastoma cell lines and primary cultures, SHIP2 staining at the plasma membrane partly overlaps with PI(4,5)P2 immunoreactivity. PI(4,5)P2 was upregulated in SHIP2-deficient N1 cells as compared to control cells; in contrast, PI4P was very much decreased in SHIP2-deficient cells. Therefore, SHIP2 controls both PI(3,4,5)P3 and PI(4,5)P2 levels in intact cells. In 1321 N1 cells, the PI(4,5)P2-binding protein myosin-1c was identified as a new interactor of SHIP2. Regulation of PI(4,5)P2 and PI4P content by SHIP2 controls 1321 N1 cell migration through the organization of focal adhesions. Thus, our results reveal a new role of SHIP2 in the control of PI(4,5)P2, PI4P and cell migration in PTEN-deficient glioblastoma 1321 N1 cells.


Assuntos
Membrana Celular/metabolismo , Movimento Celular , Glioblastoma/enzimologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Linhagem Celular Tumoral , Membrana Celular/genética , Adesões Focais/genética , Adesões Focais/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/fisiopatologia , Humanos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA