Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(9)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38302440

RESUMO

Magnetic fields are being used for detailed anatomical and functional examination of the human brain. In addition, evidence for their efficacy in treatment of brain dysfunctions is accumulating. Transcranial static magnetic field stimulation (tSMS) is a recently developed technique for noninvasively modifying brain functions. In tSMS, a strong and small magnet when placed over the skull can temporarily suppress brain functions. Its modulatory effects persist beyond the time of stimulation. However, the neurophysiological mechanisms underlying tSMS-induced plasticity remain unclear. Here, using acute motor cortical slice preparation obtained from male C57BL/6N mice, we show that tSMS alters the intrinsic electrical properties of neurons by altering the activity of chloride (Cl-) channels in neurons. Exposure of mouse pyramidal neurons to a static magnetic field (SMF) at a strength similar to human tSMS temporarily decreased their excitability and induced transient neuronal swelling. The effects of SMF were blocked by DIDS and GlyH-101, but not by NPPB, consistent with the pharmacological profile of SLC26A11, a transporter protein with Cl- channel activity. Whole-cell voltage-clamp recordings of the GlyH-101-sensitive Cl- current component showed significant enhancement of the component at both subthreshold and depolarized membrane potentials after SMF application, resulting in shunting inhibition and reduced repetitive action potential (AP) firing at the respective potentials. Thus, this study provides the first neurophysiological evidence for the inhibitory effect of tSMS on neuronal activity and advances our mechanistic understanding of noninvasive human neuromodulation.


Assuntos
Cloretos , Glicina/análogos & derivados , Hidrazinas , Campos Magnéticos , Masculino , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Magnética Transcraniana/métodos
2.
World J Surg Oncol ; 20(1): 156, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568949

RESUMO

BACKGROUND: Chemotherapy is a common approach for cancer treatment, but intrinsic genetic mutations in different individuals may cause different responses to chemotherapy, resulting in unique histopathological changes. The genetic mutation along with the distinct histopathological features may indicate new tumor entities. BCOR-CCNB3 sarcomas is a kind of Ewing-like sarcomas (ELS) occurring mostly in bone and soft tissues. No gene fusion other than BCOR-CCNB3 has been found in this type of tumor. CASE PRESENTATION: We herein report a case of 17-year-old male patient, presented with a mass on his left shoulder that was diagnosed as undifferentiated small round cell sarcoma according to core biopsy. The patient received 5 courses of preoperational chemotherapy, and the tumor was resected and analyzed. Primitive small round cells and larger myoid cells in the resected tumor tissue but not in biopsy were observed, and arterioles stenosis and occlusion were also detected, indicating a dramatic change of histopathological features of this tumor. In addition, the immunohistochemical results showed the altered staining patterns of BCOR, bcl2, CyclinD1, TLE1, AR, SMA, CD117, STAB2, CD56, and CD99 in tumor tissues after chemotherapy. Notably, RNA sequencing revealed a RNF213-SLC26A11 fusion in the tumor sample. CONCLUSIONS: The BCOR-CCNB3 sarcoma with RNF213-SLC26A11 fusion may indicate a subset of tumors that undergo histopathological changes in response to chemotherapy. More similar cases in the future may help to clarify the clinical meanings of RNF213-SLC26A11 fusion in BCOR-CCNB3 sarcomas and the underlying mechanisms.


Assuntos
Neoplasias Ósseas , Sarcoma , Neoplasias de Tecidos Moles , Adenosina Trifosfatases/genética , Adolescente , Biomarcadores Tumorais/genética , Neoplasias Ósseas/patologia , Ciclina B/genética , Fusão Gênica , Humanos , Masculino , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Sarcoma/patologia , Neoplasias de Tecidos Moles/patologia , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética
3.
Mol Neurobiol ; 60(10): 5931-5943, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37380823

RESUMO

Neuronal swelling is a pathological feature of stroke which contributes to the formation of cytotoxic edema. Under hypoxic condition, aberrant accumulation of sodium and chloride ions inside neurons increases osmotic pressure, leading to cell volume increase. Sodium entry pathway in neurons has been studied extensively. Here, we determine whether SLC26A11 is the major chloride entry pathway under hypoxia and could be the target for protection against ischemic stroke. In this study, electrophysiological properties of chloride current in primary cultured neurons were characterized using low chloride solution, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid, and SLC26A11-specific siRNA under physiological conditions or ATP-depleted conditions. In vivo effect of SLC26A11 was evaluated on a rat stroke reperfusion model. We found that SLC26A11 mRNA in primary cultured neurons was upregulated as early as 6 h after oxygen glucose deprivation, and later, the protein level was elevated accordingly. Blockade of SLC26A11 activity could reduce chloride entry and attenuate hypoxia-induced neuronal swelling. In the animal stroke model, SLC26A11 upregulation was mainly located in surviving neurons close to the infarct core. SLC26A11 inhibition ameliorates infarct formation and improves functional recovery. These findings demonstrate that SLC26A11 is a major pathway for chloride entry in stroke, contributing to neuronal swelling. Inhibition of SLC26A11 could be a novel therapeutic strategy for stroke.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Ratos , Animais , Cloretos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Hipóxia/patologia , Edema , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Infarto , Sódio/metabolismo , Glucose , Isquemia Encefálica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA