Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.300
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(7): 1223-1239.e20, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35290801

RESUMO

While CRISPR screens are helping uncover genes regulating many cell-intrinsic processes, existing approaches are suboptimal for identifying extracellular gene functions, particularly in the tissue context. Here, we developed an approach for spatial functional genomics called Perturb-map. We applied Perturb-map to knock out dozens of genes in parallel in a mouse model of lung cancer and simultaneously assessed how each knockout influenced tumor growth, histopathology, and immune composition. Moreover, we paired Perturb-map and spatial transcriptomics for unbiased analysis of CRISPR-edited tumors. We found that in Tgfbr2 knockout tumors, the tumor microenvironment (TME) was converted to a fibro-mucinous state, and T cells excluded, concomitant with upregulated TGFß and TGFß-mediated fibroblast activation, indicating that TGFß-receptor loss on cancer cells increased TGFß bioavailability and its immunosuppressive effects on the TME. These studies establish Perturb-map for functional genomics within the tissue at single-cell resolution with spatial architecture preserved and provide insight into how TGFß responsiveness of cancer cells can affect the TME.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genômica , Camundongos , Neoplasias/genética , Fator de Crescimento Transformador beta/genética
2.
Cell ; 170(1): 127-141.e15, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666115

RESUMO

Homeostatic programs balance immune protection and self-tolerance. Such mechanisms likely impact autoimmunity and tumor formation, respectively. How homeostasis is maintained and impacts tumor surveillance is unknown. Here, we find that different immune mononuclear phagocytes share a conserved steady-state program during differentiation and entry into healthy tissue. IFNγ is necessary and sufficient to induce this program, revealing a key instructive role. Remarkably, homeostatic and IFNγ-dependent programs enrich across primary human tumors, including melanoma, and stratify survival. Single-cell RNA sequencing (RNA-seq) reveals enrichment of homeostatic modules in monocytes and DCs from human metastatic melanoma. Suppressor-of-cytokine-2 (SOCS2) protein, a conserved program transcript, is expressed by mononuclear phagocytes infiltrating primary melanoma and is induced by IFNγ. SOCS2 limits adaptive anti-tumoral immunity and DC-based priming of T cells in vivo, indicating a critical regulatory role. These findings link immune homeostasis to key determinants of anti-tumoral immunity and escape, revealing co-opting of tissue-specific immune development in the tumor microenvironment.


Assuntos
Interferon gama/imunologia , Melanoma/imunologia , Monócitos/imunologia , Metástase Neoplásica/patologia , Neoplasias Cutâneas/imunologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Microambiente Tumoral , Animais , Diferenciação Celular , Células Dendríticas/imunologia , Homeostase , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Monócitos/patologia , Análise de Sequência de RNA , Análise de Célula Única , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transcriptoma
3.
Development ; 151(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38391249

RESUMO

Lactation is an essential process for mammals. In sheep, the R96C mutation in suppressor of cytokine signaling 2 (SOCS2) protein is associated with greater milk production and increased mastitis sensitivity. To shed light on the involvement of R96C mutation in mammary gland development and lactation, we developed a mouse model carrying this mutation (SOCS2KI/KI). Mammary glands from virgin adult SOCS2KI/KI mice presented a branching defect and less epithelial tissue, which were not compensated for in later stages of mammary development. Mammary epithelial cell (MEC) subpopulations were modified, with mutated mice having three times as many basal cells, accompanied by a decrease in luminal cells. The SOCS2KI/KI mammary gland remained functional; however, MECs contained more lipid droplets versus fat globules, and milk lipid composition was modified. Moreover, the gene expression dynamic from virgin to pregnancy state resulted in the identification of about 3000 differentially expressed genes specific to SOCS2KI/KI or control mice. Our results show that SOCS2 is important for mammary gland development and milk production. In the long term, this finding raises the possibility of ensuring adequate milk production without compromising animal health and welfare.


Assuntos
Lactação , Glândulas Mamárias Animais , Animais , Feminino , Camundongos , Gravidez , Células Epiteliais/metabolismo , Lactação/genética , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , Mutação/genética
4.
Trends Immunol ; 44(6): 399-407, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100645

RESUMO

Conventional dendritic cells (cDCs) can integrate multiple stimuli from the environment and provide three separate outputs in terms of antigen presentation, costimulation, and cytokine production; this guides the activation, expansion, and differentiation of distinct functional T helper subsets. Accordingly, the current dogma posits that T helper cell specification requires these three signals in sequence. Data show that T helper 2 (Th2) cell differentiation requires antigen presentation and costimulation from cDCs but does not require polarizing cytokines. In this opinion article, we propose that the 'third signal' driving Th2 cell responses is, in fact, the absence of polarizing cytokines; indeed, the secretion of the latter is actively suppressed in cDCs, concomitant with acquired pro-Th2 functions.


Assuntos
Citocinas , Células Th2 , Humanos , Linfócitos T Auxiliares-Indutores , Diferenciação Celular , Células Th1
5.
FASEB J ; 38(1): e23388, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145323

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of cells that differentiate from myeloid cells, proliferate in cancer and inflammatory reactions, and mainly exert immunosuppressive functions. Nonetheless, the precise mechanisms that dictate both the accumulation and function of MDSCs remain only partially elucidated. In the course of our investigation, we observed a positive correlation between the content of MDSCs especially G-MDSCs and miR-9 level in the tumor tissues derived from miR-9 knockout MMTV-PyMT mice and 4T1 tumor-bearing mice with miR-9 overexpression. Combined with RNA-seq analysis, we identified SOCS2 and SOCS3 as direct targets of miR-9. Additionally, our research unveiled the pivotal role of the CCL5/CCR5 axis in orchestrating the chemotactic recruitment of G-MDSCs within the tumor microenvironment, a process that is enhanced by miR-9. These findings provide fresh insights into the molecular mechanisms governing the accumulation of MDSCs within the framework of breast cancer development.


Assuntos
MicroRNAs , Células Supressoras Mieloides , Neoplasias , Proteína 3 Supressora da Sinalização de Citocinas , Animais , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Células Supressoras Mieloides/patologia , Neoplasias/patologia , Microambiente Tumoral , Proteína 3 Supressora da Sinalização de Citocinas/genética
6.
Exp Cell Res ; 441(1): 114152, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38971518

RESUMO

At present, the function of SOCS1 in Kashin-Beck disease (KBD) has not been reported. This study aims to explore the expression and mechanism of SOCS1 in KBD, and provide theoretical basis for the prevention and treatment of KBD. The expression of SOCS1 were measured by qRT-PCR and Western blot. ELISA was used to detect the content of SOCS1 in serum and synovial fluid. CCK-8 kits were selected to measure the cell viability. Methylation Specific PCR (MSP) assay is used to detect the methylation level of SOCS1 in chondrocytes. Flow cytometry was used to analyze the apoptosis rate of chondrocytes in different groups. The expression of apoptosis related proteins (caspase-3 and caspase-9) and Cytochrome c were detected using Western blot. The mitochondrial ROS, ATP and the activity of mitochondrial respiratory chain complexes were detected using commercial kits. The results showed that the expression of SOCS1 significantly increases in KBD patients and T-2 induced chondrocytes. Further research has found that the methylation levels of SOCS1 were significantly reduced in KBD patients and T-2 induced chondrocytes. Functional studies have found that SOCS1 silencing inhibited chondrocyte apoptosis and mitochondrial dysfunction. More importantly, SOCS1 regulated mitochondrial mediated chondrocyte apoptosis through the IGF-1/IGF-1R/FAK/Drp1 pathway. In conclusion, SOCS1 expression is increased and methylation levels are decreased in KBD, and is involved in regulating mitochondrial mediated apoptosis in T-2 induced chondrocytes through IGF-1/IGF-1R/FAK/Drp1 signaling. This study provides new theoretical basis for the treatment and prevention of KBD in clinical practice.


Assuntos
Apoptose , Condrócitos , Metilação de DNA , Mitocôndrias , Regiões Promotoras Genéticas , Proteína 1 Supressora da Sinalização de Citocina , Humanos , Apoptose/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/genética , Condrócitos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Regiões Promotoras Genéticas/genética , Doença de Kashin-Bek/metabolismo , Doença de Kashin-Bek/genética , Doença de Kashin-Bek/patologia , Masculino , Pessoa de Meia-Idade , Feminino , Células Cultivadas , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/genética
7.
Mol Ther ; 32(5): 1425-1444, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38504518

RESUMO

Pathological ocular angiogenesis has long been associated with myeloid cell activation. However, the precise cellular and molecular mechanisms governing the intricate crosstalk between the immune system and vascular changes during ocular neovascularization formation remain elusive. In this study, we demonstrated that the absence of the suppressor of cytokine signaling 3 (SOCS3) in myeloid cells led to a substantial accumulation of microglia and macrophage subsets during the neovascularization process. Our single-cell RNA sequencing data analysis revealed a remarkable increase in the expression of the secreted phosphoprotein 1 (Spp1) gene within these microglia and macrophages, identifying subsets of Spp1-expressing microglia and macrophages during neovascularization formation in angiogenesis mouse models. Notably, the number of Spp1-expressing microglia and macrophages exhibited further elevation during neovascularization in mice lacking myeloid SOCS3. Moreover, our investigation unveiled the Spp1 gene as a direct transcriptional target gene of signal transducer and activator of transcription 3. Importantly, pharmaceutical activation of SOCS3 or blocking of SPP1 resulted in a significant reduction in pathological neovascularization. In conclusion, our study highlights the pivotal role of the SOCS3/STAT3/SPP1 axis in the regulation of pathological retinal angiogenesis.


Assuntos
Macrófagos , Microglia , Osteopontina , Neovascularização Retiniana , Proteína 3 Supressora da Sinalização de Citocinas , Animais , Camundongos , Angiogênese , Modelos Animais de Doenças , Regulação da Expressão Gênica , Macrófagos/metabolismo , Camundongos Knockout , Microglia/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Osteopontina/metabolismo , Osteopontina/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Neovascularização Retiniana/genética , Neovascularização Retiniana/etiologia , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética
8.
Cell Mol Life Sci ; 81(1): 329, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090270

RESUMO

Decidualisation of the endometrium is a key event in early pregnancy, which enables embryo implantation. Importantly, the molecular processes impairing decidualisation in obese mothers are yet to be characterised. We hypothesise that impaired decidualisation in obese mice is mediated by the upregulation of leptin modulators, the suppressor of cytokine signalling 3 (SOCS3) and the protein tyrosine phosphatase non-receptor type 2 (PTPN2), together with the disruption of progesterone (P4)-signal transducer and activator of transcription (STAT3) signalling. After feeding mice with chow diet (CD) or high-fat diet (HFD) for 16 weeks, we confirmed the downregulation of P4 and oestradiol (E2) steroid receptors in decidua from embryonic day (E) 6.5 and decreased proliferation of stromal cells from HFD. In vitro decidualised mouse endometrial stromal cells (MESCs) and E6.5 deciduas from the HFD showed decreased expression of decidualisation markers, followed by the upregulation of SOCS3 and PTPN2 and decreased phosphorylation of STAT3. In vivo and in vitro leptin treatment of mice and MESCs mimicked the results observed in the obese model. The downregulation of Socs3 and Ptpn2 after siRNA transfection of MESCs from HFD mice restored the expression level of decidualisation markers. Finally, DIO mice placentas from E18.5 showed decreased labyrinth development and vascularisation and fetal growth restricted embryos. The present study revealed major defects in decidualisation in obese mice, characterised by altered uterine response to E2 and P4 steroid signalling. Importantly, altered hormonal response was associated with increased expression of leptin signalling modulators SOCS3 and PTPN2. Elevated levels of SOCS3 and PTPN2 were shown to molecularly affect decidualisation in obese mice, potentially disrupting the STAT3-PR regulatory molecular hub.


Assuntos
Decídua , Retardo do Crescimento Fetal , Leptina , Placenta , Transdução de Sinais , Animais , Feminino , Camundongos , Gravidez , Decídua/metabolismo , Decídua/patologia , Dieta Hiperlipídica/efeitos adversos , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Obesidade/patologia , Placenta/metabolismo , Progesterona/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Fator de Transcrição STAT3/metabolismo , Células Estromais/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética
9.
J Infect Dis ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041838

RESUMO

BACKGROUND: Sepsis is a life-threatening syndrome with complex pathophysiology and great clinical heterogeneity which complicates the delivery of personalized therapies. Our goals were to demonstrate that some biomarkers identified as regulatory immune checkpoints in preclinical studies could 1)improve sepsis prognostication based on clinical variables and 2)guide the stratification of septic patients in subgroups with shared characteristics of immune response or survival outcomes. METHODS: We assayed the soluble counterparts of 12 biomarkers of immune response in 113 internal medicine patients with bacterial sepsis. RESULTS: IL-1 receptor-associated kinase M (IRAK-M) exhibited the highest hazard ratios (HRs) for increased 7-day (1.94 [1.17-3.20]) and 30-day mortality (1.61 [1.14-2.28]). HRs of IRAK-M and Galectin-1 for predicting 1-year mortality were 1.52 (1.20-1.92) and 1.64 (1.13-2.36), respectively. A prognostic model including IRAK-M, Galectin-1, and clinical variables (Charlson Comorbidty Index, multiple source of sepsis, and SOFA score) had high discrimination for death at 7 days and 30 days (area under the curve 0.90 [0.82-0.99]) and 0.86 [0.79-0.94], respectively). Patients with elevated serum levels of IRAK-M and Galectin-1 had clinical traits of immune suppression and low survival rates. None of the 12 biomarkers were independent predictors of 2-year mortality. CONCLUSIONS: Two inhibitory immune checkpoint biomarkers (IRAK-M and Galectin-1) helped identify 3 distinct sepsis phenotypes with distinct prognoses. These biomarkers shed light on the interplay between immune dysfunction and prognosis in patients with bacterial sepsis and may prove to be useful prognostic markers, therapeutic targets, and biochemical markers for targeted enrollment in targeted therapeutic trials.

10.
J Physiol ; 602(7): 1341-1369, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38544414

RESUMO

Intervertebral disc degeneration (IDD) poses a significant health burden, necessitating a deeper understanding of its molecular underpinnings. Transcriptomic analysis reveals 485 differentially expressed genes (DEGs) associated with IDD, underscoring the importance of immune regulation. Weighted gene co-expression network analysis (WGCNA) identifies a yellow module strongly correlated with IDD, intersecting with 197 DEGs. Protein-protein interaction (PPI) analysis identifies ITGAX, MMP9 and FCGR2A as hub genes, predominantly expressed in macrophages. Functional validation through in vitro and in vivo experiments demonstrates the pivotal role of FCGR2A in macrophage polarization and IDD progression. Mechanistically, FCGR2A knockdown suppresses M1 macrophage polarization and NF-κB phosphorylation while enhancing M2 polarization and STAT3 activation, leading to ameliorated IDD in animal models. This study sheds light on the regulatory function of FCGR2A in macrophage polarization, offering novel insights for IDD intervention strategies. KEY POINTS: This study unveils the role of FCGR2A in intervertebral disc (IVD) degeneration (IDD). FCGR2A knockdown mitigates IDD in cellular and animal models. Single-cell RNA-sequencing uncovers diverse macrophage subpopulations in degenerated IVDs. This study reveals the molecular mechanism of FCGR2A in regulating macrophage polarization. This study confirms the role of the NF-κB/STAT3 pathway in regulating macrophage polarization in IDD.


Assuntos
Degeneração do Disco Intervertebral , Receptores de IgG , Animais , Perfilação da Expressão Gênica , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Macrófagos , NF-kappa B/genética , NF-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Humanos , Ratos , Receptores de IgG/metabolismo
11.
J Physiol ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39197117

RESUMO

This study investigates the molecular mechanisms behind ischaemia/reperfusion (I/R) injury in the brain, focusing on neuronal apoptosis. It scrutinizes the role of the Jun proto-oncogene in apoptosis, involvement of SOCS1 in neural precursor cell accumulation in ischaemic regions, and the upregulation of C-EBPß in the hippocampus following I/R. Key to the study is understanding how Jun controls C-EBPß degradation via SOCS1, potentially offering new clinical treatment avenues for I/R. Techniques such as mRNA sequencing, KEGG enrichment analysis and protein-protein interaction (PPI) in mouse models have indicated involvement of Jun (AP-1) in I/R-induced cerebral damage. The study employs middle cerebral artery occlusion in different mouse models and oxygen-glucose deprivation/reoxygenation in cortical neurons to examine the impacts of Jun and SOCS1 manipulation on cerebral I/R injury and neuronal damage. The findings reveal that I/R reduces Jun expression in the brain, but its restoration lessens cerebral I/R injury and neuron death. Jun activates SOCS1 transcriptionally, leading to C-EBPß degradation, thereby diminishing cerebral I/R injury through the SOCS1/C-EBPß pathway. These insights provide a deeper understanding of post-I/R cerebral injury mechanisms and suggest new therapeutic targets for cerebral I/R injury. KEY POINTS: Jun and SOCS1 are poorly expressed, and C-EBPß is highly expressed in ischaemia/reperfusion mouse brain tissues. Jun transcriptionally activates SOCS1. SOCS1 promotes the ubiquitination-dependent C-EBPß protein degradation. Jun blunts oxygen-glucose deprivation/reoxygenation-induced neuron apoptosis and alleviates neuronal injury. This study provides a theoretical basis for the management of post-I/R brain injury.

12.
Curr Issues Mol Biol ; 46(6): 5668-5681, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38921010

RESUMO

Based on the analgesic and anti-inflammatory effects of clonidine in previous studies, we hypothesized that clonidine could accelerate wound healing in rats by regulating the expression of related cytokines. In this study, the wound healing effect of clonidine was evaluated using an excision wound model in diabetic rats and a HaCaT cell model. The wounds were treated daily with topical clonidine. The results analyzed by ImageJ2 software show that the wounds of the rats that were treated with 15 ng/mL clonidine recovered faster, and the wound size was also significantly reduced compared to the control group. Western blot assays determined that clonidine induced an increase in the expression of vascular growth factors, namely, Ang-1, Ang-2, and VEGF. Moreover, clonidine demonstrated a rescuing effect on JAK2 within the JAK/STAT pathway by inhibiting SOCS3 expression, leading to decreased SOCS3 levels and increased expression of JAK2 and phospho-STAT3. Histopathological analysis revealed that clonidine promoted complete epithelial repair and minimized inflammation in skin tissue. Additionally, clonidine stimulated HaCaT cell proliferation in vitro and enhanced cellular energy levels in the presence of AGEs. In conclusion, clonidine promoted vascular growth and wound healing by stimulating the expression of cytokines that are beneficial for wound healing.

13.
Angiogenesis ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922557

RESUMO

BACKGROUND: Pathological angiogenesis causes significant vision loss in neovascular age-related macular degeneration and other retinopathies with neovascularization (NV). Neuronal/glial-vascular interactions influence the release of angiogenic and neurotrophic factors. We hypothesized that botulinum neurotoxin serotype A (BoNT/A) modulates pathological endothelial cell proliferation through glial cell activation and growth factor release. METHODS: A laser-induced choroidal NV (CNV) was employed to investigate the anti-angiogenic effects of BoNT/A. Fundus fluorescence angiography, immunohistochemistry, and real-time PCR were used to assess BoNT/A efficacy in inhibiting CNV and the molecular mechanisms underlying this inhibition. Neuronal and glial suppressor of cytokine signaling 3 (SOCS3) deficient mice were used to investigate the molecular mechanisms of BoNT/A in inhibiting CNV via SOCS3. FINDINGS: In laser-induced CNV mice with intravitreal BoNT/A treatment, CNV lesions decreased > 30%; vascular leakage and retinal glial activation were suppressed; and Socs3 mRNA expression was induced while vascular endothelial growth factor A (Vegfa) mRNA expression was suppressed. The protective effects of BoNT/A on CNV development were diminished in mice lacking neuronal/glial SOCS3. CONCLUSION: BoNT/A suppressed laser-induced CNV and glial cell activation, in part through SOCS3 induction in neuronal/glial cells. BoNT/A treatment led to a decrease of pro-angiogenic factors, including VEGFA, highlighting the potential of BoNT/A as a therapeutic intervention for pathological angiogenesis in retinopathies.

14.
Funct Integr Genomics ; 24(2): 48, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436805

RESUMO

Long non-coding RNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) in various diseases has been verified. However, the underlying mechanism of CDKN2B-AS1 contributes to the development of allergic rhinitis (AR) remains unknown. To evaluate the impact of CDKN2B-AS1 on AR, BALB/c mice were sensitized by intraperitoneal injection of normal saline containing ovalbumin (OVA) and calmogastrin to establish an AR model. Nasal rubbing and sneezing were documented after the final OVA treatment. The concentrations of IgE, IgG1, and inflammatory elements were quantified using ELISA. Hematoxylin and eosin (H&E) staining and immunofluorescence were used to assess histopathological variations and tryptase expression, respectively. StarBase, TargetScan and luciferase reporter assays were applied to predict and confirm the interactions among CDKN2B-AS1, miR-98-5p, and SOCS1. CDKN2B-AS1, miR-98-5p, and SOCS1 levels were assessed by quantitative real-time PCR (qRT-PCR) or western blotting. Our results revealed that CDKN2B-AS1 was obviously over-expressed in the nasal mucosa of AR patients and AR mice. Down-regulation of CDKN2B-AS1 significantly decreased nasal rubbing and sneezing frequencies, IgE and IgG1 concentrations, and cytokine levels. Furthermore, down-regulation of CDKN2B-AS1 also relieved the pathological changes in the nasal mucosa, and the infiltration of eosinophils and mast cells. Importantly, these results were reversed by the miR-98-5p inhibitor, whereas miR-98-5p directly targeted CDKN2B-AS1, and miR-98-5p negatively regulated SOCS1 level. Our findings demonstrate that down-regulation of CDKN2B-AS1 improves allergic inflammation and symptoms in a murine model of AR through the miR-98-5p/SOCS1 axis, which provides new insights into the latent functions of CDKN2B-AS1 in AR treatment.


Assuntos
MicroRNAs , RNA Longo não Codificante , Rinite Alérgica , Animais , Humanos , Camundongos , Regulação para Baixo , Imunoglobulina E , Imunoglobulina G , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Rinite Alérgica/induzido quimicamente , Rinite Alérgica/genética , RNA Longo não Codificante/genética , Espirro , Proteína 1 Supressora da Sinalização de Citocina/genética
15.
Mol Med ; 30(1): 78, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844873

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a life-threatening renal disease and needs urgent therapies. Wogonin is renoprotective in DN. This study aimed to explore the mechanism of how wogonin regulated high glucose (HG)-induced renal cell injury. METHODS: Diabetic mice (db/db), control db/m mice, and normal glucose (NG)- or HG-treated human tubule epithelial cells (HK-2) were used to evaluate the levels of suppressor of cytokine signaling 3 (SOCS3), Toll-like receptor 4 (TLR4), inflammation and fibrosis. Lentivirus was used to regulate SOCS3 and TLR4 expressions. After oral gavage of wogonin (10 mg/kg) or vehicle in db/db mice, histological morphologies, blood glucose, urinary protein, serum creatinine values (Scr), blood urea nitrogen (BUN), superoxide dismutase (SOD), glutathione (GSH), and reactive oxygen species (ROS) were assessed. RT-qPCR and Western blot evaluated inflammation and fibrosis-related molecules. RESULTS: HG exposure induced high blood glucose, severe renal injuries, high serumal Src and BUN, low SOD and GSH, and increased ROS. HG downregulated SOCS3 but upregulated TLR4 and JAK/STAT, fibrosis, and inflammasome-related proteins. Wogonin alleviated HG-induced renal injuries by decreasing cytokines, ROS, Src, and MDA and increasing SOD and GSH. Meanwhile, wogonin upregulated SOCS3 and downregulated TLR4 under HG conditions. Wogonin-induced SOCS3 overexpression directly decreased TLR4 levels and attenuated JAK/STAT signaling pathway-related inflammation and fibrosis, but SOCS3 knockdown significantly antagonized the protective effects of wogonin. However, TLR4 knockdown diminished SOCS3 knockdown-induced renal injuries. CONCLUSION: Wogonin attenuates renal inflammation and fibrosis by upregulating SOCS3 to inhibit TLR4 and JAK/STAT pathway.


Assuntos
Nefropatias Diabéticas , Flavanonas , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas , Receptor 4 Toll-Like , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Animais , Transdução de Sinais/efeitos dos fármacos , Camundongos , Humanos , Masculino , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças
16.
J Virol ; 97(4): e0009523, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37014223

RESUMO

Many RING domain E3 ubiquitin ligases play critical roles in fine-tuning the innate immune response, yet little is known about their regulatory role in flavivirus-induced innate immunity. In previous studies, we found that the suppressor of cytokine signaling 1 (SOCS1) protein mainly undergoes lysine 48 (K48)-linked ubiquitination. However, the E3 ubiquitin ligase that promotes the K48-linked ubiquitination of SOCS1 is unknown. In the present study, we found that RING finger protein 123 (RNF123) binds to the SH2 domain of SOCS1 through its RING domain and facilitates the K48-linked ubiquitination of the K114 and K137 residues of SOCS1. Further studies found that RNF123 promoted the proteasomal degradation of SOCS1 and promoted Toll-like receptor 3 (TLR3)- and interferon (IFN) regulatory factor 7 (IRF7)-mediated type I IFN production during duck Tembusu virus (DTMUV) infection through SOCS1, ultimately inhibiting DTMUV replication. Overall, these findings demonstrate a novel mechanism by which RNF123 regulates type I IFN signaling during DTMUV infection by targeting SOCS1 degradation. IMPORTANCE In recent years, posttranslational modification (PTM) has gradually become a research hot spot in the field of innate immunity regulation, and ubiquitination is one of the critical PTMs. DTMUV has seriously endangered the development of the waterfowl industry in Southeast Asian countries since its outbreak in 2009. Previous studies have shown that SOCS1 is modified by K48-linked ubiquitination during DTMUV infection, but E3 ubiquitin ligase catalyzing the ubiquitination of SOCS1 has not been reported. Here, we identify for the first time that RNF123 acts as an E3 ubiquitin ligase that regulates TLR3- and IRF7-induced type I IFN signaling during DTMUV infection by targeting the K48-linked ubiquitination of the K114 and K137 residues of SOCS1 and the proteasomal degradation of SOCS1.


Assuntos
Infecções por Flavivirus , Flavivirus , Interferon Tipo I , Proteína 1 Supressora da Sinalização de Citocina , Animais , Patos , Flavivirus/fisiologia , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Receptor 3 Toll-Like/metabolismo , Ubiquitina-Proteína Ligases/imunologia , Ubiquitinação , Proteína 1 Supressora da Sinalização de Citocina/imunologia , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/virologia , Ligação Proteica , Domínios Proteicos/imunologia , Replicação Viral , Células HEK293 , Embrião de Mamíferos , Humanos
17.
J Virol ; 97(7): e0066423, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37358466

RESUMO

Nuclear receptors are ligand-activated transcription factors that play an important role in regulating innate antiviral immunity and other biological processes. However, the role of nuclear receptors in the host response to infectious bursal disease virus (IBDV) infection remains elusive. In this study, we show that IBDV infection or poly(I·C) treatment of DF-1 or HD11 cells markedly decreased nuclear receptor subfamily 2 group F member 2 (NR2F2) expression. Surprisingly, knockdown, knockout, or inhibition of NR2F2 expression in host cells remarkably inhibited IBDV replication and promoted IBDV/poly(I·C)-induced type I interferon and interferon-stimulated genes expression. Furthermore, our data show that NR2F2 negatively regulates the antiviral innate immune response by promoting the suppressor of cytokine signaling 5 (SOCS5) expression. Thus, reduced NR2F2 expression in the host response to IBDV infection inhibited viral replication by enhancing the expression of type I interferon by targeting SOCS5. These findings reveal that NR2F2 plays a crucial role in antiviral innate immunity, furthering our understanding of the mechanism underlying the host response to viral infection. IMPORTANCE Infectious bursal disease (IBD) is an immunosuppressive disease causing considerable economic losses to the poultry industry worldwide. Nuclear receptors play an important role in regulating innate antiviral immunity. However, the role of nuclear receptors in the host response to IBD virus (IBDV) infection remains elusive. Here, we report that NR2F2 expression decreased in IBDV-infected cells, which consequently reduced SOCS5 expression, promoted type I interferon expression, and suppressed IBDV infection. Thus, NR2F2 serves as a negative factor in the host response to IBDV infection by regulating SOCS5 expression, and intervention in the NR2F2-mediated host response by specific inhibitors might be employed as a strategy for prevention and treatment of IBD.


Assuntos
Infecções por Birnaviridae , Vírus da Doença Infecciosa da Bursa , Interferon Tipo I , MicroRNAs , Doenças das Aves Domésticas , Animais , Interferon Tipo I/metabolismo , Vírus da Doença Infecciosa da Bursa/fisiologia , Galinhas , Linhagem Celular , MicroRNAs/genética , Interações Hospedeiro-Patógeno/genética , Antivirais , Replicação Viral
18.
J Virol ; 97(6): e0005323, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37255470

RESUMO

Macrophages can serve as a reservoir for human immunodeficiency-1 (HIV-1) virus in host cells, constituting a barrier to eradication, even in patients who are receiving antiretroviral therapy. Although many noncoding RNAs have been characterized as regulators in HIV-1/AIDS-induced immune response and pathogenesis, only a few long noncoding RNAs (lncRNAs) have demonstrated a close association with HIV-1 replication, and the molecular mechanisms remain unknown. In this study, we investigated how lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), related microRNAs, and key inflammatory genes alter HIV-1 replication in macrophages. Our data show that HIV-1 infection modulates the expression of miR-155 and miR-150-5p in a time-dependent manner, which is regulated by MALAT1. MALAT1 induced suppressor of cytokine signaling 1 (SOCS1) expression by sponging miR-150-5p in HIV-1-infected macrophages and stimulated inflammatory mediators triggering receptor expressed on myeloid cells/cold inducible RNA binding protein (TREM 1/CIRP) ligand/receptor. The RNA immunoprecipitation (RIP) assay validated the direct interaction within the MALAT1/miR-150-5p/SOCS1 axis. HIV-1 infection-mediated upregulation of MALAT1, SOCS1, and HIV-1 Gag was attenuated by SN50 (an NF-кB p50 inhibitor). MALAT1 antisense oligonucleotides (ASOs) suppressed HIV-1 p24 production and HIV-1 Gag gene expression and decreased expression of miR-155 and SOCS1, as well as the production of proinflammatory cytokines by HIV-1-infected macrophages. In conclusion, HIV-1 infection induces MALAT1, which attenuates miR-150-5p expression and increases SOCS1 expression, promoting HIV-1 replication and reactivation. These data provide new insights into how MALAT1 alters the macrophage microenvironment and subsequently promotes viral replication and suggest a potential role for targeting MALAT1 as a therapeutic approach to eliminate HIV-1 reservoirs. IMPORTANCE Viral reservoirs constitute an obstacle to curing HIV-1 diseases, despite antiretroviral therapy. Macrophages serve as viral reservoirs in HIV infection by promoting long-term replication and latency. Recent studies have shown that lncRNAs can modulate virus-host interactions, but the underlying mechanisms are not fully understood. In this study, we demonstrate how lncRNA MALAT1 contributes to HIV-1 replication through modulation of the miR-150/SOCS1 axis in human macrophages. Our findings have the potential to identify new therapies for eliminating HIV-1 reservoirs in immune cells.


Assuntos
Infecções por HIV , MicroRNAs , RNA Longo não Codificante , Replicação Viral , Humanos , Infecções por HIV/genética , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , HIV-1/fisiologia
19.
IUBMB Life ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39143849

RESUMO

The purpose of this study was to analyze the mechanism by which irisin affects ß-cell pyroptosis in type 2 diabetes mellitus (T2DM). The in vivo T2DM model was established by raised with high-fat diet and intraperitoneally injection of streptozocin. Min6 cells were divided into four groups: negative control (NC), high glucose (HG), HG + irisin, and HG + irisin+3-MA. The cell viability was determined by CCK-8 assay. Dual-luciferase gene reporter assay was conducted to confirm the binding between miR-19b-3p and SOCS3. The expression level of FNDC5 and GSDMD was visualized using the immunofluorescence assay. The protein level of FNDC5, Beclin1, LC3II/I, NLRP3, cleaved-caspase-1, GSDMD-N, STAT3, p-STAT3, and SOCS3 was determined by Western blotting. The secretion of irisin, lactate dehydrogenase (LDH), and insulin was checked by ELISA. In vivo results showed that pathological changes in islet tissues with declined number of ß cells, elevated FBG value, decreased FIN and HOMA-ß value, elevated autophagy-associated proteins expressions, and activated NLRP3 signaling in T2DM mice, which were dramatically reversed by FNDC5 overexpression. Furthermore, the declined level of miR-19b-3p and p-STAT3, as well as the upregulation of SOCS3, was greatly rescued by FNDC5 overexpression. The in vitro data confirmed the binding site between SOCS3 and miR-19b-3p. SOCS3 was downregulated and p-STAT3 was upregulated in miR-19b-3p mimic-treated Min6 cells. In HG-stimulated Min6 cells, the elevated cell viability, increased production of insulin, decreased release of LDH, and inactivated NLRP3 signaling induced by irisin were abolished by miR-19b-3p inhibitor and STAT3 inhibitor. The increased level of autophagy-related proteins and activated SOCS3/STAT3 axis induced by irisin in HG-stimulated Min6 cells were abolished by miR-19b-3p inhibitor. The inhibitory effect of irisin against NLRP3 signaling in HG-stimulated Min6 cells was abrogated by 3-MA. In conclusion, irisin alleviated the pyroptosis of ß cells in T2DM by inhibiting NLRP3 signaling through miR-19b-3p/SOCS3/STAT3 axis mediated autophagy.

20.
Cytokine ; 174: 156461, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38065046

RESUMO

Establishing a balance between Th1 and Th2 subsets and M1- and M2-type macrophages is essential for the control of Leishmania infection. The suppressors of cytokine secretion (SOCS) proteins, particularly SOCS1 and SOCS3, play a significant role in regulating cytokine-triggered signaling pathways, thereby impacting the macrophage-and effector T-cell mediated antileishmanial immune response. In addition to the pro-inflammatory cytokines, Leishmania-derived lipophosphoglycan (LPG) and CpG-DNA interact with TLR2 and TLR9 to trigger SOCS expression. The aberrant levels of SOCS1 and SOCS3 expression in Leishmania-infected macrophages impair macrophage-T-cell interaction perturbing the balance in macrophage subsets polarization. This hinders macrophage apoptosis and macrophage-mediated leishmanicidal activity, both support the establishment of infection and parasite replication. Furthermore, aberrant SOCS3 levels in T-cells disrupt Th1 differentiation and aid in parasite replication, lesion development, and pathological immune responses. Strategically, selective modulation of SOCS expression and function in immune effector cells may reduce parasite survival and prevent disease progression.


Assuntos
Leishmania , Proteínas Supressoras da Sinalização de Citocina , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Citocinas/metabolismo , Imunidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA