Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39177244

RESUMO

Brucella ovis is an etiologic agent of ovine epididymitis and brucellosis that causes global devastation in sheep, rams, goats, small ruminants and deer. There are no cost-effective methods for the worldwide eradication of ovine brucellosis. B. ovis and other protein targets from various Brucella species are currently in the pipeline for high-throughput structural analysis at the Seattle Structural Genomics Center for Infectious Disease (SSGCID), with the aim of identifying new therapeutic targets. Furthermore, the wealth of structures generated are effective tools for teaching scientific communication, structural science and biochemistry. One of these structures, B. ovis leucine-, isoleucine-, valine-, threonine- and alanine-binding protein (BoLBP), is a putative periplasmic amino acid-binding protein. BoLBP shares less than 29% sequence identity with any other structure in the Protein Data Bank. The production, crystallization and high-resolution structures of BoLBP are reported. BoLBP is a prototypical bacterial periplasmic amino acid-binding protein with the characteristic Venus flytrap topology of two globular domains encapsulating a large central cavity containing the peptide-binding region. The central cavity contains small molecules usurped from the crystallization milieu. The reported structures reveal the conformational flexibility of the central cavity in the absence of bound peptides. The structural similarity to other LBPs can be exploited to accelerate drug repurposing.

2.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 2): 43-51, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305785

RESUMO

The methylerythritol phosphate (MEP) pathway is a metabolic pathway that produces the isoprenoids isopentyl pyrophosphate and dimethylallyl pyrophosphate. Notably, the MEP pathway is present in bacteria and not in mammals, which makes the enzymes of the MEP pathway attractive targets for discovering new anti-infective agents due to the reduced chances of off-target interactions leading to side effects. There are seven enzymes in the MEP pathway, the third of which is IspD. Two crystal structures of Burkholderia thailandensis IspD (BtIspD) were determined: an apo structure and that of a complex with cytidine triphosphate (CTP). Comparison of the CTP-bound BtIspD structure with the apo structure revealed that CTP binding stabilizes the loop composed of residues 13-19. The apo structure of Mycobacterium paratuberculosis IspD (MpIspD) is also reported. The melting temperatures of MpIspD and BtIspD were evaluated by circular dichroism. The moderate Tm values suggest that a thermal shift assay may be feasible for future inhibitor screening. Finally, the binding affinity of CTP for BtIspD was evaluated by isothermal titration calorimetry. These structural and biophysical data will aid in the discovery of IspD inhibitors.


Assuntos
Burkholderia , Mycobacterium avium subsp. paratuberculosis , Difosfatos , Cristalografia por Raios X
3.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 8): 173-182, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38990055

RESUMO

Klebsiella pneumoniae (Kp) is an infectious disease pathogen that poses a significant global health threat due to its potential to cause severe infections and its tendency to exhibit multidrug resistance. Understanding the enzymatic mechanisms of the oxygen-insensitive nitroreductases (Kp-NRs) from Kp is crucial for the development of effective nitrofuran drugs, such as nitrofurantoin, that can be activated as antibiotics. In this paper, three crystal structures of two Kp-NRs (PDB entries 7tmf/7tmg and 8dor) are presented, and an analysis of their crystal structures and their flavin mononucleotide (FMN)-binding mode is provided. The structures with PDB codes 7tmf (Kp-NR1a), 7tmg (Kp-NR1b) and 8dor (Kp-NR2) were determined at resolutions of 1.97, 1.90 and 1.35 Å, respectively. The Kp-NR1a and Kp-NR1b structures adopt an αß fold, in which four-stranded antiparallel ß-sheets are surrounded by five helices. With domain swapping, the ß-sheet was expanded with a ß-strand from the other molecule of the dimer. The difference between the structures lies in the loop spanning Leu173-Ala185: in Kp-NR1a the loop is disordered, whereas the loop adopts multiple conformations in Kp-NR1b. The FMN interactions within Kp-NR1/NR2 involve hydrogen-bond and π-stacking interactions. Kp-NR2 contains four-stranded antiparallel ß-sheets surrounded by eight helices with two short helices and one ß-sheet. Structural and sequence alignments show that Kp-NR1a/b and Kp-NR2 are homologs of the Escherichia coli oxygen-insensitive NRs YdjA and NfnB and of Enterobacter cloacae NR, respectively. By homology inference from E. coli, Kp-NR1a/b and Kp-NR2 may detoxify polynitroaromatic compounds and Kp-NR2 may activate nitrofuran drugs to cause bactericidal activity through a ping-pong bi-bi mechanism, respectively.


Assuntos
Klebsiella pneumoniae , Modelos Moleculares , Nitrorredutases , Klebsiella pneumoniae/enzimologia , Cristalografia por Raios X , Nitrorredutases/química , Nitrorredutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sequência de Aminoácidos , Mononucleotídeo de Flavina/metabolismo , Mononucleotídeo de Flavina/química , Sítios de Ligação , Ligação Proteica , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/enzimologia , Conformação Proteica em Folha beta , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
4.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 6): 137-143, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37223974

RESUMO

The compound ethyl-adenosyl monophosphate ester (ethyl-AMP) has been shown to effectively inhibit acetyl-CoA synthetase (ACS) enzymes and to facilitate the crystallization of fungal ACS enzymes in various contexts. In this study, the addition of ethyl-AMP to a bacterial ACS from Legionella pneumophila resulted in the determination of a co-crystal structure of this previously elusive structural genomics target. The dual functionality of ethyl-AMP in both inhibiting ACS enzymes and promoting crystallization establishes its significance as a valuable resource for advancing structural investigations of this class of proteins.


Assuntos
Genômica , Acetilcoenzima A/metabolismo , Cristalografia por Raios X , Monofosfato de Adenosina/metabolismo
5.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 10): 257-266, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728609

RESUMO

Inorganic pyrophosphate (PPi) is generated as an intermediate or byproduct of many fundamental metabolic pathways, including DNA/RNA synthesis. The intracellular concentration of PPi must be regulated as buildup can inhibit many critical cellular processes. Inorganic pyrophosphatases (PPases) hydrolyze PPi into two orthophosphates (Pi), preventing the toxic accumulation of the PPi byproduct in cells and making Pi available for use in biosynthetic pathways. Here, the crystal structure of a family I inorganic pyrophosphatase from Legionella pneumophila is reported at 2.0 Šresolution. L. pneumophila PPase (LpPPase) adopts a homohexameric assembly and shares the oligonucleotide/oligosaccharide-binding (OB) ß-barrel core fold common to many other bacterial family I PPases. LpPPase demonstrated hydrolytic activity against a general substrate, with Mg2+ being the preferred metal cofactor for catalysis. Legionnaires' disease is a severe respiratory infection caused primarily by L. pneumophila, and thus increased characterization of the L. pneumophila proteome is of interest.


Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , Legionella pneumophila/genética , Pirofosfatase Inorgânica/genética , Cristalografia por Raios X , Doença dos Legionários/genética , Doença dos Legionários/microbiologia
6.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 2): 59-65, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35102894

RESUMO

Giardiasis is the most prevalent diarrheal disease globally and affects humans and animals. It is a significant problem in developing countries, the number one cause of travelers' diarrhea and affects children and immunocompromised individuals, especially HIV-infected individuals. Giardiasis is treated with antibiotics (tinidazole and metronidazole) that are also used for other infections such as trichomoniasis. The ongoing search for new therapeutics for giardiasis includes characterizing the structure and function of proteins from the causative protozoan Giardia lamblia. These proteins include hypothetical proteins that share 30% sequence identity or less with proteins of known structure. Here, the atomic resolution structure of a 15.6 kDa protein was determined by molecular replacement. The structure has the two-layer αß-sandwich topology observed in the prototypical endoribonucleases L-PSPs (liver perchloric acid-soluble proteins) with conserved allosteric active sites containing small molecules from the crystallization solution. This article is an educational collaboration between Hampton University and the Seattle Structural Genomics Center for Infectious Disease.


Assuntos
Giardia lamblia/química , Proteínas de Protozoários/química , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Proteínas de Protozoários/metabolismo
7.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 1): 31-38, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981773

RESUMO

Members of the bacterial genus Brucella cause brucellosis, a zoonotic disease that affects both livestock and wildlife. Brucella are category B infectious agents that can be aerosolized for biological warfare. As part of the structural genomics studies at the Seattle Structural Genomics Center for Infectious Disease (SSGCID), FolM alternative dihydrofolate reductases 1 from Brucella suis and Brucella canis were produced and their structures are reported. The enzymes share ∼95% sequence identity but have less than 33% sequence identity to other homologues with known structure. The structures are prototypical NADPH-dependent short-chain reductases that share their highest tertiary-structural similarity with protozoan pteridine reductases, which are being investigated for rational therapeutic development.


Assuntos
Brucella canis , Brucella suis , Brucelose , Tetra-Hidrofolato Desidrogenase , Brucelose/microbiologia , Cristalografia por Raios X , Humanos , Tetra-Hidrofolato Desidrogenase/genética
8.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 1): 25-30, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981772

RESUMO

Paraburkholderia xenovorans degrades organic wastes, including polychlorinated biphenyls. The atomic structure of a putative dehydrogenase/reductase (SDR) from P. xenovorans (PxSDR) was determined in space group P21 at a resolution of 1.45 Å. PxSDR shares less than 37% sequence identity with any known structure and assembles as a prototypical SDR tetramer. As expected, there is some conformational flexibility and difference in the substrate-binding cavity, which explains the substrate specificity. Uniquely, the cofactor-binding cavity of PxSDR is not well conserved and differs from those of other SDRs. PxSDR has an additional seven amino acids that form an additional unique loop within the cofactor-binding cavity. Further studies are required to determine how these differences affect the enzymatic functions of the SDR.


Assuntos
Burkholderiaceae , Redutases-Desidrogenases de Cadeia Curta , Cristalografia por Raios X , Oxirredutases/química , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Especificidade por Substrato
9.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 2): 52-58, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35102893

RESUMO

Burkholderia phymatum is an important symbiotic nitrogen-fixing betaproteobacterium. B. phymatum is beneficial, unlike other Burkholderia species, which cause disease or are potential bioagents. Structural genomics studies at the SSGCID include characterization of the structures of short-chain dehydrogenases/reductases (SDRs) from multiple Burkholderia species. The crystal structure of a short-chain dehydrogenase from B. phymatum (BpSDR) was determined in space group C2221 at a resolution of 1.80 Å. BpSDR shares less than 38% sequence identity with any known structure. The monomer is a prototypical SDR with a well conserved cofactor-binding domain despite its low sequence identity. The substrate-binding cavity is unique and offers insights into possible functions and likely inhibitors of the enzymatic functions of BpSDR.


Assuntos
Burkholderiaceae/enzimologia , NAD/química , Redutases-Desidrogenases de Cadeia Curta/química , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Coenzimas/química , Coenzimas/metabolismo , Cristalografia por Raios X , Modelos Moleculares , NAD/metabolismo , Conformação Proteica
10.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 2): 54-60, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33620038

RESUMO

Rickettsia felis, a Gram-negative bacterium that causes spotted fever, is of increasing interest as an emerging human pathogen. R. felis and several other Rickettsia strains are classed as National Institute of Allergy and Infectious Diseases priority pathogens. In recent years, R. felis has been shown to be adaptable to a wide range of hosts, and many fevers of unknown origin are now being attributed to this infectious agent. Here, the structure of acetoacetyl-CoA reductase from R. felis is reported at a resolution of 2.0 Å. While R. felis acetoacetyl-CoA reductase shares less than 50% sequence identity with its closest homologs, it adopts a fold common to other short-chain dehydrogenase/reductase (SDR) family members, such as the fatty-acid synthesis II enzyme FabG from the prominent pathogens Staphylococcus aureus and Bacillus anthracis. Continued characterization of the Rickettsia proteome may prove to be an effective means of finding new avenues of treatment through comparative structural studies.


Assuntos
Oxirredutases do Álcool/química , Proteínas de Bactérias/química , Rickettsia felis/enzimologia , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/isolamento & purificação , Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica
11.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 5): 609-14, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25945716

RESUMO

The crystal structures of prostaglandin F synthase (PGF) from both Leishmania major and Trypanosoma cruzi with and without their cofactor NADP have been determined to resolutions of 2.6 Å for T. cruzi PGF, 1.25 Å for T. cruzi PGF with NADP, 1.6 Å for L. major PGF and 1.8 Å for L. major PGF with NADP. These structures were determined by molecular replacement to a final R factor of less than 18.6% (Rfree of less than 22.9%). PGF in the infectious protozoa L. major and T. cruzi is a potential therapeutic target.


Assuntos
Hidroxiprostaglandina Desidrogenases/química , Leishmania major/química , NADP/química , Trypanosoma cruzi/química , Sequência de Aminoácidos , Cristalização , Humanos , Hidroxiprostaglandina Desidrogenases/genética , Leishmania major/genética , Dados de Sequência Molecular , NADP/genética , Estrutura Secundária de Proteína , Trypanosoma cruzi/genética
12.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 5): 560-5, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25945709

RESUMO

Uridine diphosphate N-acetylglucosamine pyrophosphorylase (UAP) catalyzes the final step in the synthesis of UDP-GlcNAc, which is involved in cell-wall biogenesis in plants and fungi and in protein glycosylation. Small-molecule inhibitors have been developed against UAP from Trypanosoma brucei that target an allosteric pocket to provide selectivity over the human enzyme. A 1.8 Å resolution crystal structure was determined of UAP from Entamoeba histolytica, an anaerobic parasitic protozoan that causes amoebic dysentery. Although E. histolytica UAP exhibits the same three-domain global architecture as other UAPs, it appears to lack three α-helices at the N-terminus and contains two amino acids in the allosteric pocket that make it appear more like the enzyme from the human host than that from the other parasite T. brucei. Thus, allosteric inhibitors of T. brucei UAP are unlikely to target Entamoeba UAPs.


Assuntos
Entamoeba histolytica/química , Entamoeba histolytica/enzimologia , UTP-Glucose-1-Fosfato Uridililtransferase/química , Uridina Difosfato N-Acetilglicosamina/química , Sequência de Aminoácidos , Cristalização , Entamoeba histolytica/genética , Humanos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Uridina Difosfato N-Acetilglicosamina/genética
13.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 5): 572-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25945711

RESUMO

Three structures of the histidine triad family protein from Entamoeba histolytica, the causative agent of amoebic dysentery, were solved at high resolution within the Seattle Structural Genomics Center for Infectious Disease (SSGCID). The structures have sulfate (PDB entry 3oj7), AMP (PDB entry 3omf) or GMP (PDB entry 3oxk) bound in the active site, with sulfate occupying the same space as the α-phosphate of the two nucleotides. The C(α) backbones of the three structures are nearly superimposable, with pairwise r.m.s.d.s ranging from 0.06 to 0.13 Å.


Assuntos
Monofosfato de Adenosina/metabolismo , Entamoeba histolytica/química , Guanosina Monofosfato/metabolismo , Hidrolases/química , Sulfatos/metabolismo , Sequência de Aminoácidos , Cristalização , Entamoeba histolytica/genética , Entamoeba histolytica/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína
14.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 5): 594-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25945714

RESUMO

Entamoeba histolytica is the etiological agent of amebiasis, a diarrheal disease which causes amoebic liver abscesses and amoebic colitis. Approximately 50 million people are infected worldwide with E. histolytica. With only 10% of infected people developing symptomatic amebiasis, there are still an estimated 100,000 deaths each year. Because of the emergence of resistant strains of the parasite, it is necessary to find a treatment which would be a proper response to this challenge. ADP-ribosylation factor (ARF) is a member of the ARF family of GTP-binding proteins. These proteins are ubiquitous in eukaryotic cells; they generally associate with cell membranes and regulate vesicular traffic and intracellular signalling. The crystal structure of ARF1 from E. histolytica has been determined bound to magnesium and GDP at 1.8 Å resolution. Comparison with other structures of eukaryotic ARF proteins shows a highly conserved structure and supports the interswitch toggle mechanism of communicating the conformational state to partner proteins.


Assuntos
Fator 1 de Ribosilação do ADP/química , Fator 1 de Ribosilação do ADP/metabolismo , Entamoeba histolytica/química , Entamoeba histolytica/metabolismo , Guanosina Difosfato/metabolismo , Magnésio/metabolismo , Fator 1 de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/química , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Sequência de Aminoácidos , Cristalização , Entamoeba histolytica/genética , Humanos , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA