Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IUBMB Life ; 73(4): 659-669, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33625758

RESUMO

One of the most common malignant tumors is hepatocellular carcinoma (HCC). Progression of HCC mainly results from highly complex molecular and pathological pathways. Midkine (MDK) is a growth factor that impacts viability, migration, and other cell activities. Since MDK has been involved in the inflammatory responses, it has been claimed that MDK has a crucial role in HCC. MDK acts as an anti-apoptotic factor, which mediates tumor cell viability. In addition, MDK blocks anoikis to promote metastasis. There is also evidence that MDK is involved in angiogenesis. It has been shown that the application of anti-MDK approaches might be promising in the treatment of HCC. Besides, due to the elevated expression in HCC, MDK has been proposed as a biomarker in the prognosis and diagnosis of HCC. In this review, we will discuss the role of MDK in HCC. It is hoped that the development of new strategies concerning MDK-based therapies will be promising in HCC management.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Midkina/fisiologia , Animais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patologia , Terapia Genética/métodos , Humanos , Imunoterapia/métodos , Fígado/irrigação sanguínea , Fígado/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , Midkina/sangue , Midkina/química , Neovascularização Patológica/metabolismo , Interferência de RNA
2.
J Am Acad Dermatol ; 78(3 Suppl 1): S37-S42, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29248521

RESUMO

The interleukin 13 (IL-13) and IL-31 cytokines and inflammatory pathways have been identified as important for the pathophysiology of atopic dermatitis (AD). Monoclonal antibodies against IL-13 have been studied for the treatment of asthma since 2011. More recently, 2 phase 2 trials have been completed with these antibodies in AD treatment. In both trials, significant reductions of Eczema Area and Severity Index scores were seen. IL-31 is thought to play a role transmitting itch sensation to the central nervous system, and blocking IL-31 activity reduces itch in patients with AD. One phase 2 trial has been completed for a humanized antibody against IL-31 receptor alpha, which is 1 subunit of the IL-31 receptor complex. This study showed significant dose-dependent reductions in pruritus, Eczema Area and Severity Index scores, and markers of sleep quality. Initial clinical trials for monoclonal antibodies against IL-13 and IL-31 receptor A all show promise, although long-term safety and efficacy data are lacking. Nevertheless, these medications will likely play a role in the treatment of moderate-to-severe AD.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Produtos Biológicos/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/genética , Terapia de Alvo Molecular/métodos , Ensaios Clínicos Fase II como Assunto , Dermatite Atópica/diagnóstico , Feminino , Humanos , Injeções Subcutâneas , Interleucina-13/genética , Interleucinas/genética , Masculino , Segurança do Paciente , Prognóstico , Índice de Gravidade de Doença , Resultado do Tratamento
3.
Nutr Res Rev ; 31(1): 85-97, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29191255

RESUMO

Despite the fact that inflammatory bowel disease (IBD) has still no recognised therapy, treatments which have proven at least mildly successful in improving IBD symptoms include anti-inflammatory drugs and monoclonal antibodies targeting pro-inflammatory cytokines. Resveratrol, a natural (poly)phenol found in grapes, red wine, grape juice and several species of berries, has been shown to prevent and ameliorate intestinal inflammation. Here, we discuss the role of resveratrol in the improvement of inflammatory disorders involving the intestinal mucosa. The present review covers three specific aspects of resveratrol in the framework of inflammation: (i) its content in food; (ii) its intestinal absorption and metabolism; and (iii) its anti-inflammatory effects in the intestinal mucosa in vitro and in the very few in vivo studies present to date. Actually, if several studies have shown that resveratrol may down-regulate mediators of intestinal immunity in rodent models, only two groups have performed intervention studies in human subjects using resveratrol as an agent to improve IBD conditions. The effects of resveratrol should be further investigated by conducting well-designed clinical trials, also taking into account different formulations for the delivery of the bioactive compound.


Assuntos
Dieta , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/uso terapêutico , Polifenóis/uso terapêutico , Resveratrol/uso terapêutico , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Extratos Vegetais/farmacocinética , Extratos Vegetais/farmacologia , Polifenóis/farmacocinética , Polifenóis/farmacologia , Resveratrol/farmacocinética , Resveratrol/farmacologia
4.
J Clin Immunol ; 36 Suppl 1: 57-67, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27210535

RESUMO

Advances in DNA sequencing technologies have led to a quickening in the pace at which new genetic immunodeficiency disorders have been identified. Among the newly identified defects are a number of disorders that present primarily with autoimmunity as opposed to recurrent infections. These "immune dysregulation" disorders have begun to cluster together to form an increased understanding of some of the basic molecular mechanisms that underlie the establishment and maintenance of immune tolerance and the development of autoimmunity. This review will present three major themes that have emerged in our understanding of the mechanisms that underlie autoimmunity and immune dysregulation in humans.


Assuntos
Autoimunidade , Síndromes de Imunodeficiência/etiologia , Síndromes de Imunodeficiência/metabolismo , Animais , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/terapia , Autoimunidade/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/terapia , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Transdução de Sinais , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
5.
Bioorg Med Chem ; 24(21): 5036-5046, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27555284

RESUMO

Members of the Janus kinase (JAK) family are potential therapeutic targets. Abnormal signaling by mutant JAK2 is related to hematological malignancy, such as myeloproliferative neoplasms (MPNs), and tyrosine kinase inhibitor (TKI)-resistance in non-small cell lung cancer (NSCLC). We discovered a potent and highly selective inhibitor of JAK2 over JAK1 and -3 based on the structure of 4-(2,5-triazole)-pyrrolopyrimidine. Among all triazole compounds tested, 2,5-triazole regioisomers more effectively inhibited JAK2 kinase activity than isomers with substitutions of various alkyl groups at the R2 position, except for methyl-substituted 1,5-triazole, which was more potent than the corresponding 1,4- and 2,5-triazoles. None of the synthesized 1,4-isomers inhibited all three JAK family members. Compounds with phenyl or tolyl group substituents at the R1 position were completely inactive compared with the corresponding analogues with a methyl substituted at the R1 position. As a result of this structure-activity relationship, 54, which is substituted with a cyclopropylmethyl moiety, exhibited significant inhibitory activity and selectivity (IC50=41.9nM, fold selectivity JAK1/2 10.6 and JAK3/2 58.1). Compound 54 also exhibited an equivalent inhibition of wild type JAK2 and the V617F mutant. Moreover, 54 inhibited the proliferation of HEL 92.1.7 cells, which carry JAK2 V617F, and gefitinib-resistant HCC827 cells. Compound 54 also suppressed STAT3 phosphorylation at Y705.


Assuntos
Descoberta de Drogas , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Triazóis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 3/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Pirróis/química , Estereoisomerismo , Relação Estrutura-Atividade , Triazóis/química
6.
Comput Struct Biotechnol J ; 21: 1697-1710, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36879886

RESUMO

Glucocorticoids are potent immunosuppressive drugs, but long-term treatment leads to severe side-effects. While there is a commonly accepted model for GR-mediated gene activation, the mechanism behind repression remains elusive. Understanding the molecular action of the glucocorticoid receptor (GR) mediated gene repression is the first step towards developing novel therapies. We devised an approach that combines multiple epigenetic assays with 3D chromatin data to find sequence patterns predicting gene expression change. We systematically tested> 100 models to evaluate the best way to integrate the data types and found that GR-bound regions hold most of the information needed to predict the polarity of Dex-induced transcriptional changes. We confirmed NF-κB motif family members as predictors for gene repression and identified STAT motifs as additional negative predictors.

7.
JHEP Rep ; 5(2): 100628, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36687470

RESUMO

Background & Aims: The prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH), is increasing. Individuals with NASH often develop liver fibrosis and advanced liver fibrosis is the main determinant of mortality in individuals with NASH. We and others have reported that STAT3 contributes to liver fibrosis and hepatocellular carcinoma in mice. Methods: Here, we explored whether STAT3 activation in hepatocyte and non-hepatocyte areas, measured by phospho-STAT3 (pSTAT3), is associated with liver fibrosis progression in 133 patients with NAFLD. We further characterized the molecular and cellular determinants of STAT3 activation by integrating spatial distribution and transcriptomic changes in fibrotic NAFLD livers.Results: pSTAT3 scores in non-hepatocyte areas progressively increased with fibrosis severity (r = 0.53, p <0.001). Correlation analyses between pSTAT3 scores and expression of 1,540 immune- and cancer-associated genes revealed a large effect of STAT3 activation on gene expression changes in non-hepatocyte areas and confirmed a major role for STAT3 activation in fibrogenesis. Digital spatial transcriptomic profiling was also performed on 13 regions selected in hepatocyte and non-hepatocyte areas from four NAFLD liver biopsies with advanced fibrosis, using a customized panel of markers including pSTAT3, PanCK+CK8/18, and CD45. The regions were further segmented based on positive or negative pSTAT3 staining. Cell deconvolution analysis revealed that activated STAT3 was enriched in hepatic progenitor cells (HPCs) and sinusoidal endothelial cells. Regression of liver fibrosis upon STAT3 inhibition in mice with NASH resulted in a reduction of HPCs, demonstrating a direct role for STAT3 in HPC expansion. Conclusion: Increased understanding of the spatial dependence of STAT3 signaling in NASH and liver fibrosis progression could lead to novel targeted treatment approaches. Impact and implications: Advanced liver fibrosis is the main determinant of mortality in patients with NASH. This study showed using liver biopsies from 133 patients with NAFLD, that STAT3 activation in non-hepatocyte areas is strongly associated with fibrosis severity, inflammation, and progression to NASH. STAT3 activation was enriched in hepatic progenitor cells (HPCs) and sinusoidal endothelial cells (SECs), as determined by innovative technologies interrogating the spatial distribution of pSTAT3. Finally, STAT3 inhibition in mice resulted in reduced liver fibrosis and depletion of HPCs, suggesting that STAT3 activation in HPCs contributes to their expansion and fibrogenesis in NAFLD.

8.
JID Innov ; 3(2): 100176, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36876221

RESUMO

Autoinflammatory diseases (AIDs) arise from disturbances that alter interactions of immune cells and tissues. They give rise to prominent (auto)inflammation in the absence of aberrant autoantibodies and/or autoreactive T cells. AIDs that are predominantly caused by changes in the inflammasome pathways, such as the NLRP3- or pyrin-associated inflammasome, have gained substantial attention over the last years. However, AIDs resulting primarily from other changes in the defense system of the innate immune system are less well-studied. These noninflammasome-mediated AIDs relate to, for example, disturbance in the TNF or IFN signaling pathways or aberrations in genes affecting the IL-1RA. The spectrum of clinical signs and symptoms of these conditions is vast. Thus, recognizing early cutaneous signs constitutes an important step in differential diagnoses for dermatologists and other physicians. This review provides an overview of the pathogenesis, clinical presentation, and available treatment options highlighting dermatologic aspects of noninflammasome-mediated AIDs.

9.
J Ginseng Res ; 47(2): 183-192, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36926608

RESUMO

Viral infections are known as one of the major factors causing death. Ginseng is a medicinal plant that demonstrated a wide range of antiviral potential, and saponins are the major bioactive ingredients in the genus Panax with vast therapeutic potential. Studies focusing on the antiviral activity of the genus Panax plant-derived agents (extracts and saponins) and their mechanisms were identified and summarized, including contributions mainly from January 2016 until January 2022. P. ginseng, P. notoginseng, and P. quinquefolius were included in the review as valuable medicinal herbs against infections with 14 types of viruses. Reports from 9 extracts and 12 bioactive saponins were included, with 6 types of protopanaxadiol (PPD) ginsenosides and 6 types of protopanaxatriol (PPT) ginsenosides. The mechanisms mainly involved the inhibition of viral attachment and replication, the modulation of immune response by regulating signaling pathways, including the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway, phosphoinositide-dependent kinase-1 (PDK1)/ protein kinase B (Akt) signaling pathway, c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) pathway, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. This review includes detailed information about the mentioned antiviral effects of the genus Panax extracts and saponins in vitro and in vivo, and in human clinical trials, which provides a scientific basis for ginseng as an adjunctive therapeutic drug or nutraceutical.

10.
JID Innov ; 2(2): 100096, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35265936

RESUMO

Epidermolysis bullosa is a group of severe skin blistering disorders, which currently have no cure. The pathology of epidermolysis bullosa is recognized as having an inflammatory component, but the role of inflammation in different epidermolysis bullosa disorders is unclear. Epidermolysis bullosa simplex (EBS) is primarily caused by sequence variants in keratin genes; its most severe form, EBS generalized severe, is characterized by aggregates of keratin proteins, and cell models of EBS generalized severe show constitutively elevated stress. IFN-γ is a major mediator of inflammation, and we show that the addition of IFN-γ alone to disease model keratinocytes promotes keratin aggregation, decreases cell-cell junctions, delays wound closure, and reduces cell proliferation. IFN-γ exposure weakens the intercellular cohesion of monolayers on mechanical stress, with IFN-γ-treated EBS monolayers more fragmented than IFN-γ-treated wild-type monolayers. A humanized monoclonal antibody to IFN-γ neutralized the detrimental effects on keratinocytes, restoring cell proliferation, increasing cell-cell adhesion, accelerating wound closure in the presence of IFN-γ, and reducing IFN-γ-mediated keratin aggregation in EBS cells. These suggest that treatment with IFN-γ blocking antibodies may constitute a promising new therapeutic strategy for patients with EBS and may also have ameliorating effects on other inflammatory skin diseases.

11.
JID Innov ; 2(1): 100066, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35146480

RESUMO

Psoriasis and atopic dermatitis are chronic inflammatory skin diseases characterized by keratinocyte (KC) hyperproliferation and epidermal acanthosis (hyperplasia). The milieu of disease-associated cytokines and soluble factors is considered a mitogenic factor; however, pinpointing the exact mitogens in this complex microenvironment is challenging. We employed organotypic human epidermal equivalents, faithfully mimicking native epidermal proliferation and stratification, to evaluate the proliferative effects of a broad panel of (literature-based) potential mitogens. The KC GF molecule, the T-helper 2 cytokines IL-4 and IL-13, and the psoriasis-associated cytokine IL-17A caused acanthosis by hyperplasia through a doubling in the number of proliferating KCs. In contrast, IFN-γ lowered proliferation, whereas IL-6, IL-20, IL-22, and oncostatin M induced acanthosis not by hyperproliferation but by hypertrophy. The T-helper 2‒cytokine‒mediated hyperproliferation was Jak/signal transducer and activator of transcription 3 dependent, whereas IL-17A and KC GF induced MAPK/extracellular signal‒regulated kinase kinase/extracellular signal‒regulated kinase‒dependent proliferation. This discovery that key regulators in atopic dermatitis and psoriasis are direct KC mitogens not only adds evidence to their crucial role in the pathophysiological processes but also highlights an additional therapeutic pillar for the mode of action of targeting biologicals (e.g., dupilumab) or small-molecule drugs (e.g., tofacitinib) by the normalization of KC turnover within the epidermal compartment.

12.
Curr Res Immunol ; 3: 110-117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35676924

RESUMO

Mycobacteria tuberculosis (M.tb) the causative agent for tuberculosis has been accredited for a high rate of morbidity and mortality worldwide. The rise in MDR and XDR cases has further created new obstacles in achieving the "End TB Strategy", which is aimed for 2035. In this article, we have demonstrated the potential of sphingosine-1-phosphate (S1P) analogs in providing an anti-mycobacterial effector response by altering macrophage polarity into M1. Among S1PR1 and S1PR3 analogs, S1PR2 analogs proficiently favor selective polarization of infected human macrophages into M1 phenotypes, marked by increased expression of M1 markers and decreased M2 markers. Furthermore, S1PR1-3 analogs treated macrophages were also able to decrease the secretion of anti-inflammatory cytokine IL-10 and can induce NO secretion in infected macrophages. Lastly, only S1PR2-3 analogs were able to restrict the growth of mycobacteria in human macrophages. Taken together our study reflects the potential of S1PR2-3 analogs in providing host defenses following mycobacterial infection by favoring M1 macrophage polarization.

13.
JID Innov ; 2(1): 100068, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34977845

RESUMO

Primary cutaneous CD30+ T-cell lymphoproliferative disorders are the second most common cutaneous lymphomas. According to the World Health Organization, CD30+ T-cell lymphoproliferative disorders include primary cutaneous anaplastic large cell lymphoma (C-ALCL) and lymphomatoid papulosis (LyP) as well as borderline lesions. C-ALCL and LyP are thought to represent two ends of a spectrum of diseases that have different clinical presentations, clinical courses, and prognoses in their classic forms but share the same histology of medium to large CD30+ atypical lymphoid cell infiltrates. Because the behavior of these entities is different clinically and prognostically, we aim to search for oncogenic genomic variants using whole-exome sequencing that drive the development of LyP and C-ALCL. Clinical information, pathology, immunohistochemistry, and T-cell rearrangements on six cases of LyP and five cases of C-ALCL were reviewed to confirm the rendered diagnosis before whole-exome sequencing of all specimens. Both LyP and C-ALCL had recurrent alterations in epigenetic modifying genes affecting histone methylation and acetylation (SETD2, KMT2A, KMT2D, and CREBBP). However, they also harbor unique differences with mutations in signal transducer and activator of transcription gene STAT3 of the Jak/signal transducer and activator of transcription pathway and EOMES, a transcription factor involved in lymphocyte development, only noted in C-ALCL specimens. Genomic characterization of LyP and C-ALCL in this series confirms the role of multiple pathways involved in the biology and development of these lymphomatous processes. The identification of similar aberrations within the epigenetic modifying genes emphasizes common potential development mechanisms of lymphomagenesis within lymphoproliferative disorders being shared between LyP and C-ALCL; however, the presence of differences may account for the differences in clinical course.

14.
JACC CardioOncol ; 4(2): 166-182, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35818539

RESUMO

Myeloproliferative neoplasms are associated with increased risk for thrombotic complications. These conditions most commonly involve somatic mutations in genes that lead to constitutive activation of the Janus-associated kinase signaling pathway (eg, Janus kinase 2, calreticulin, myeloproliferative leukemia protein). Acquired gain-of-function mutations in these genes, particularly Janus kinase 2, can cause a spectrum of disorders, ranging from clonal hematopoiesis of indeterminate potential, a recently recognized age-related promoter of cardiovascular disease, to frank hematologic malignancy. Beyond thrombosis, patients with myeloproliferative neoplasms can develop other cardiovascular conditions, including heart failure and pulmonary hypertension. The authors review the pathophysiologic mechanisms of cardiovascular complications of myeloproliferative neoplasms, which involve inflammation, prothrombotic and profibrotic factors (including transforming growth factor-beta and lysyl oxidase), and abnormal function of circulating clones of mutated leukocytes and platelets from affected individuals. Anti-inflammatory therapies may provide cardiovascular benefit in patients with myeloproliferative neoplasms, a hypothesis that requires rigorous evaluation in clinical trials.

15.
JID Innov ; 2(4): 100126, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35620703

RESUMO

As solid organ transplantation becomes more prevalent, more individuals are living as members of the immunosuppressed population with an elevated risk for cutaneous squamous cell carcinoma (cSCC). Although great progress has been made in understanding the pathogenesis of cSCC in general, little is known about the drivers of tumorigenesis in immunosuppressed patients and organ-transplant recipients, specifically. This systematic review sought to synthesize information regarding the genetic and epigenetic alterations as well as changes in protein and mRNA expression that place this growing population at risk for cSCC, influence treatment response, and promote tumor aggressiveness. This review will provide investigators with a framework to identify future areas of investigation and clinicians with additional insight into how to best manage these patients.

16.
J Ginseng Res ; 46(2): 304-314, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35509827

RESUMO

Background: Ginsenosides are biologically active components of ginseng and have various functions. In this study, we investigated the immunomodulatory activity of a ginseng product generated from ginseng powder (GP) via enzymatic bioconversion. This product, General Bio compound K-10 mg solution (GBCK10S), exhibited increased levels of minor ginsenosides, including ginsenoside-F1, compound K, and compound Y. Methods: The immunomodulatory properties of GBCK10S were confirmed using mice and a human natural killer (NK) cell line. We monitored the expression of molecules involved in immune responses via enzyme-linked immunosorbent assay, flow cytometry, NK cell-targeted cell destruction, quantitative reverse-transcription real-time polymerase chain reaction, and Western blot analyses. Results: Oral administration of GBCK10S significantly increased serum immunoglobulin M levels and primed splenocytes to express pro-inflammatory cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ. Oral administration of GBCK10S also activated NK cells in mice. Furthermore, GBCK10S treatment stimulated a human NK cell line in vitro, thereby increasing granzyme B gene expression and activating STAT5. Conclusion: GBCK10S may have potent immunostimulatory properties and can activate immune responses mediated by B cells, Th1-type T cells, and NK cells.

17.
Jpn Dent Sci Rev ; 58: 336-347, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36340583

RESUMO

Periodontitis is a chronic inflammatory disease associated with a dysbiotic bacterial biofilm in the subgingival environment that may disturb the balance between the oral microbiome and its host. The inability of the immune system to eliminate inflammation may result in the progressive destruction of tooth-support tissues. Macrophages are crucial cellular components of the innate immune system and play important roles in diverse physiological and pathological processes. In response to periodontitis-associated bacterial communities, macrophages contribute to inflammation and restoration of tissue homeostasis through pattern recognition receptor-induced signaling cascades; therefore, targeting macrophages can be a feasible strategy to treat patients with periodontitis. Although recent studies indicate that macrophages have a spectrum of activation states, ranging from pro-inflammatory to anti-inflammatory, the regulatory mechanism of the macrophage response to dysbiosis in a tissue-specific manner remains largely unclear. Herein, we attempt to summarize the potential role of macrophage activation in the progression of periodontitis, as well as its relevance to future approaches in the treatment of periodontitis.

18.
Comput Struct Biotechnol J ; 20: 824-837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126885

RESUMO

Since Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was identified in late 2019, the coronavirus disease 2019 (COVID-19) pandemic has challenged public health around the world. Currently, there is an urgent need to explore antiviral therapeutic targets and effective clinical drugs. In this study, we systematically summarized two main therapeutic strategies against COVID-19, namely drugs targeting the SARS-CoV-2 life cycle and SARS-CoV-2-induced inflammation in host cells. The development of above two strategies is implemented by repurposing drugs and exploring potential targets. A comprehensive summary of promising drugs, especially cytokine inhibitors, and traditional Chinese medicine (TCM), provides recommendations for clinicians as evidence-based medicine in the actual clinical COVID-19 treatment. Considering the emerging SARS-CoV-2 variants greatly impact the effectiveness of drugs and vaccines, we reviewed the appearance and details of SARS-CoV-2 variants for further perspectives in drug design, which brings updating clues to develop therapeutical agents against the variants. Based on this, the development of broadly antiviral drugs, combined with immunomodulatory, or holistic therapy in the host, is prior to being considered for therapeutic interventions on mutant strains of SARS-CoV-2. Therefore, it is highly acclaimed the requirements of the concerted efforts from multi-disciplinary basic studies and clinical trials, which improves the accurate treatment of COVID-19 and optimizes the contingency measures to emerging SARS-CoV-2 variants.

19.
Acta Pharm Sin B ; 12(2): 692-707, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256940

RESUMO

Owing to incurable castration-resistant prostate cancer (CRPC) ultimately developing after treating with androgen deprivation therapy (ADT), it is vital to devise new therapeutic strategies to treat CRPC. Treatments that target programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for human cancers with clinical benefit. However, many patients, especially prostate cancer, fail to respond to anti-PD-1/PD-L1 treatment, so it is an urgent need to seek a support strategy for improving the traditional PD-1/PD-L1 targeting immunotherapy. In the present study, analyzing the data from our prostate cancer tissue microarray, we found that PD-L1 expression was positively correlated with the expression of heterogeneous nuclear ribonucleoprotein L (HnRNP L). Hence, we further investigated the potential role of HnRNP L on the PD-L1 expression, the sensitivity of cancer cells to T-cell killing and the synergistic effect with anti-PD-1 therapy in CRPC. Indeed, HnRNP L knockdown effectively decreased PD-L1 expression and recovered the sensitivity of cancer cells to T-cell killing in vitro and in vivo, on the contrary, HnRNP L overexpression led to the opposite effect in CRPC cells. In addition, consistent with the previous study, we revealed that ferroptosis played a critical role in T-cell-induced cancer cell death, and HnRNP L promoted the cancer immune escape partly through targeting YY1/PD-L1 axis and inhibiting ferroptosis in CRPC cells. Furthermore, HnRNP L knockdown enhanced antitumor immunity by recruiting infiltrating CD8+ T cells and synergized with anti-PD-1 therapy in CRPC tumors. This study provided biological evidence that HnRNP L knockdown might be a novel therapeutic agent in PD-L1/PD-1 blockade strategy that enhanced anti-tumor immune response in CRPC.

20.
JID Innov ; 1(3): 100034, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34909731

RESUMO

The emergence of a common progenitor cell has been postulated for the association of CD30-positive lymphoproliferative disease (LPD) and mycosis fungoides (MF) within the same patient. Up to now, no comprehensive analysis has yet addressed the genetic profiles of such concurrent lymphoma subtypes. We aimed to delineate the molecular alterations of clonally related CD30-positive LPD and MF occurring in the same two patients. We analyzed the molecular profile of 16 samples of two patients suffering both from CD30-positive LPD and MF being obtained over a time course of at least 5 years. To detect oncogenic mutations, we applied targeted sequencing technologies with a hybrid capture-based DNA library preparation approach, and for the identification of fusion transcripts, an anchored multiplex PCR enrichment kit was used. In all samples of CD30-positive LPD and MF, oncogenic fusions afflicting the Jak/signal transducer and activator of transcription signaling pathway were present, namely NPM1‒TYK2 in patient 1 and ILF3‒JAK2 in patient 2. Additional signal transducer and activator of transcription 5A gene STAT5A mutations exclusively occurred in lesions of CD30-positive LPD in one patient. CD30-positive LPD and MF may share genetic events when occurring within the same patients. Constitutive activation of the Jak/signal transducer and activator of transcription signaling pathway may play a central role in the molecular pathogenesis of both entities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA