Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Biol Rep ; 51(1): 420, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483663

RESUMO

BACKGROUND: Although extensive efforts have been made to improve the treatment of colorectal cancer (CRC) patients, the prognosis for these patients remains poor. A wide range of anti-cancer agents has been applied to ameliorate the clinical management of CRC patients; however, drug resistance develops in nearly all patients. Based on the prominent role of PI3K/AKT signaling in the development of CRC and current interest in the application of PI3K inhibitors, we aimed to disclose the exact mechanism underlying the efficacy of BKM120, a well-known pan-class I PI3K inhibitor, in CRC-derived SW480 cells. MATERIALS AND METHODS: The effects of BKM120 on SW480 cells were studied using MTT assay, cell cycle assay, Annexin V/PI apoptosis tests, and scratch assay. In the next step, qRT-PCR was used to investigate the underlying molecular mechanisms by which the PI3K inhibitor could suppress the survival of SW480 cells. RESULT: The results of the MTT assay showed that BKM120 could decrease the metabolic activity of SW480 cells in a concentration and time-dependent manner. Investigating the exact mechanism of BKM120 showed that this PI3K inhibitor induces its anti-survival effects through a G2/M cell cycle arrest and apoptosis-mediated cell death. Moreover, the scratch assay demonstrated that PI3K inhibition led to the inhibition of cancer invasion and inhibition of PI3K/AKT signaling remarkably sensitized SW480 cells to Cisplatin. CONCLUSION: Based on our results, inhibition of PI3K/AKT signaling can be a promising approach, either as a single modality or in combination with Cisplatin. However, further clinical studies should be performed to improve our understanding.


Assuntos
Aminopiridinas , Cisplatino , Neoplasias Colorretais , Morfolinas , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico
2.
Ecotoxicol Environ Saf ; 275: 116241, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38522287

RESUMO

Iron overload occurs due to excessive iron intake compared to the body's demand, leading to iron deposition and impairment of multiple organ functions. Our previous study demonstrated that chronic oral administration of ferric citrate (FC) caused colonic inflammatory injury. However, the precise mechanism underlying this inflammatory response remains unclear. The current study aims to investigate the mechanism by which iron overload induced by FC exposure leads to colonic inflammation. To accomplish this, mice were orally exposed to three different concentrations of FC (71 mg/kg/bw (L), 143 mg/kg/bw (M) and 286 mg/kg/bw (H)) for continuous 16 weeks, with the control group receiving ultrapure water (C). Exposure to FC caused disturbances in the excretory system, altered colonic flora alpha diversity, and enriched pathogenic bacteria, such as Mucispirillum, Helicobacter, Desulfovibrio, and Shigella. These changes led to structural disorders of the colonic flora and an inflammatory response phenotype characterized by inflammatory cells infiltration, atrophy of intestinal glands, and irregular thickening of the intestinal wall. Mechanistic studies revealed that FC-exposure activated the NF-κB signaling pathway by up-regulating TLR4, MyD88, and NF-κB mRNA levels and protein expression. This activation resulted in increased production of pro-inflammatory cytokines, further contributing to the colonic inflammation. Additionally, in vitro experiments in SW480 cells confirmed the activation of NF-κB signaling pathway by FC exposure, consistent with the in vivo findings. The significance of this study lies in its elucidation of the mechanism by which iron overload caused by FC exposure leads to colonic inflammation. By identifying the role of pathogenic bacteria and the NF-κB signaling pathway, this study could potentially offer a crucial theoretical foundation for the research on iron overload, as well as provide valuable insights for clinical iron supplementation.


Assuntos
Compostos Férricos , Sobrecarga de Ferro , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Sobrecarga de Ferro/patologia , Ferro/metabolismo
3.
Int J Environ Health Res ; 34(3): 1810-1823, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37565477

RESUMO

Ferula gummosa Boiss. is a well-known Iranian endemic plant that grows in the north and northeast regions of Iran. In Iranian traditional medicine, its gum is utilized to treat inflammation, pain, and infections of the gastrointestinal system. However, no studies have been conducted to investigate the anticancer potential of its gum against colorectal cancer cells. This study aimed to identify the chemical components of the gum of F. gummosa and investigate its effects on SW-480 cells. The experiments included MTT, clonogenic, micronucleus formation, acridine orange/ethidium bromide stain, DNA degradation, caspase 3/7 activity assay, and in vitro wound-healing experiment and investigating the expression of BAX, BCL2, MTOR, and PTEN genes. Chemical analysis using GC/MS identified 102 compounds. The gum had a significant cytotoxic effect on SW-480 cells, with an IC50 value of 1.8 µg/ml for 48 hours. The gum induced apoptosis. Microscopic observations revealed a decrease in cell proliferation, as evidenced by nuclear condensation, increased micronucleus formation, and inhibition of colony formation. Additionally, the gum suppressed cell migration, induced the expression of PTEN and BAX, and down-regulated MTOR and BCL2 genes. These findings suggest that Ferula gummosa has strong cytotoxic properties and warrants further investigation.


Assuntos
Ferula , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ferula/química , Caspase 3 , Irã (Geográfico) , Proteína X Associada a bcl-2 , Apoptose , Expressão Gênica , Serina-Treonina Quinases TOR/farmacologia
4.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012632

RESUMO

Colon cancer is a common malignant tumor of the digestive tract, and it is considered among the biggest killers. Scientific and reasonable treatments can effectively improve the survival rate of patients if performed in the early stages. Polyphyllin I (PPI), a pennogenyl saponin isolated from Paris polyphylla var. yunnanensis, has exhibited strong anti-cancer activities in previous studies. Here, we report that PPI exhibits a cytotoxic effect on colon cancer cells. PPI suppressed cell viability and induced autophagic cell death in SW480 cells after 12 and 24 h, with the IC50 values 4.9 ± 0.1 µmol/L and 3.5 ± 0.2 µmol/L, respectively. Furthermore, we found PPI induced time-concentration-dependent autophagy and apoptosis in SW480 cells. In addition, down-regulated AKT/mTOR activity was found in PPI-treated SW480 cells. Increased levels of ROS might link to autophagy and apoptosis because reducing the level of ROS by antioxidant N-acetylcysteine (NAC) treatment mitigated PPI-induced autophagy and apoptosis. Although we did not know the molecular mechanism of how PPI induced ROS production, this is the first study to show that PPI induces ROS production and down-regulates the AKT/mTOR pathway, which subsequently promotes the autophagic cell death and apoptosis of colon cancer cells. This present study reports PPI as a potential therapeutic agent for colon cancer and reveals its underlying mechanisms of action.


Assuntos
Morte Celular Autofágica , Neoplasias do Colo , Apoptose , Autofagia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Diosgenina/análogos & derivados , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo
5.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(3): 430-437, 2021 May.
Artigo em Zh | MEDLINE | ID: mdl-34018361

RESUMO

OBJECTIVE: To investigate the effect of E74-like factor 5 (ELF5) overexpression on the growth and invasion ability of colorectal cancer cells and its effect on tumor formation in nude mice. METHODS: Human colorectal cancer SW480 and HT-29 cells were divided into 5 groups: the lentivirus (LV)- GFP group transfected with empty vector LV- GFP, the LV- ELF5 group transfected with recombinant LV- ELF5, the shRNA-NC group transfected with empty vector shRNA-NC, the shRNA- ELF5 group transfected with recombinant shRNA- ELF5, and the control group, not transfected with any vector. Seventy-two h after transfection, the cell supernatant containing lentivirus was collected. The mRNA expression level of ELF5 in each group was examined by real-time fluorescent quantitative PCR (RT-qPCR). The protein expression levels of ELF5, apoptosis-related cleaved Caspase-3/Caspase-3 and cleaved Caspase-9/Caspase-9, and invasion-related E-cadherin and N-cadherin were checked with Western blot. CCK-8 was used to check cell viability. Colony formation experiment was done to evaluate colony formation rate. Flow cytometry was used to assess cell apoptosis. Transwell migration assay was used to examine cell invasion. TUNEL assay was used to examine the apoptosis of tissues cells. Immunohistochemistry test was done to determine the expression of E-cadherin and N-cadherin in tissues. 20 BALB/c nude mice were put into 4 groups (5 in each group): LV- GFP group, shRNA-NC group, LV- ELF5 group, and shRNA- ELF5 group. Recombinant lentiviral SW480 cell supernatants were subcutaneously injected into nude mice to construct nude mice tumorigenesis models and the volume changes of transplanted tumors were monitored. On the 30th day, transplanted tumor tissues from the nude mice were extracted and the tumor mass was measured. Western blot was done to measure the expression of ELF4 protein in the transplanted tumors. TUNEL staining was used to check cell apoptosis in the tissues, and the positive expression of N-cadherin in the transplanted tumor was measured by immunohistochemical tests. RESULTS: Compared with the control group, there was no statistically significant difference in the indicators of the two cell lines in the LV- GFP group and shRNA-NC group. The results of Western blot and RT-qPCR showed that the ELF5 protein and mRNA of the LV- ELF5 group of the two cell lines were up-regulated ( P<0.05, compared with those of the LV- GFP group), and the ELF5 protein and mRNA of the shRNA- ELF5 group were down-regulated ( P<0.05). The ELF5 overexpression system and interference system were successfully constructed. Compared with the LV- GFP group, data from the LV- ELF5 group showed that cell viability and colony formation rate ( P<0.05) were reduced, SW480 and HT-29 cell apoptosis was promoted, cleaved Caspase-3/Caspase-3 and cleaved Caspase-9/Caspase-9 protein expression was up-regulated ( P<0.05), cell invasion was inhibited, and the expression of E-cadherin protein was up-regulated while the expression of N-cadherin protein was down-regulated ( P<0.05). After ELF5 interference, the above-mentioned expression of cells demonstrated an opposite trend ( P<0.05, comparing shRNA- ELF5 group with shRNA-NC group). In vivo experimental results indicated that ELF5 overexpression reduced tumor volume and tumor mass ( P<0.05), promoted cell apoptosis in tissues ( P<0.05), and inhibited N-cadherin protein expression ( P<0.05). When ELF5 expression was inhibited, the above mentioned experimental results showed the opposite trend. CONCLUSION: In vivo and in vitro experiments showed that ELF5 overexpression could promote the apoptosis of colorectal cancer cells and inhibit the growth and invasion of colorectal cancer cells.


Assuntos
Neoplasias do Colo , Fator V , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/genética , Proteínas de Ligação a DNA , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fatores de Transcrição , Transfecção
6.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155840

RESUMO

Colon cancer constitutes 33% of all cancer cases in humans and the majority of patients with metastatic colon cancer still have poor prognosis. An important role in cancer development is the communication between cancer and normal cells. This may occur, among others, through extracellular vesicles (including microvesicles) (MVs), which are being released by both types of cells. MVs may regulate a diverse range of biological processes and are considered as useful cancer biomarkers. Herein, we show that similarity in the general chemical composition between colon cancer cells and their corresponding tumor-derived microvesicles (TMVs) does exist. These results have been confirmed by spectroscopic methods for four colon cancer cell lines: HCT116, LoVo, SW480, and SW620 differing in their aggressiveness/metastatic potential. Our results show that Raman and Fourier Transform InfraRed (FTIR) analysis of the cell lines and their corresponding TMVs did not differ significantly in the characterization of their chemical composition. However, hierarchical cluster analysis of the data obtained by both of the methods revealed that only Raman spectroscopy provides results that are in line with the molecular classification of colon cancer, thus having potential clinical relevance.


Assuntos
Biomarcadores Tumorais/análise , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/patologia , Neoplasias do Colo/química , Neoplasias do Colo/patologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Humanos , Células Tumorais Cultivadas
7.
Cell Physiol Biochem ; 49(4): 1539-1550, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30212824

RESUMO

BACKGROUND/AIMS: Circular RNAs (circRNAs), a type of RNA that is widely expressed in human cells, have essential roles in the development and progression of cancer. CircRNAs contain microRNA (miRNA) binding sites and can function as miRNA sponges to regulate gene expression by removing the inhibitory effect of an miRNA on its target gene. METHODS: We used the bioinformatics software TargetScan and miRanda to predict circRNA-miRNA and miRNAi-Mrna interactions. Rate of inhibiting of proliferation was measured using a WST-8 cell proliferation assay. Clone formation ability was assessed with a clone formation inhibition test. Cell invasion and migration capacity was evaluated by performing a Transwell assay. Relative gene expression was assessed using quantitative real-time polymerase chain reaction and relative protein expression levels were determined with western blotting. circRNA and miRNA interaction was confirmed by dual-luciferase reporter and RNA-pull down assays. RESULTS: In the present study, the miRNA hsa-miR-21-5p was a target of circRNA-ACAP2, and T lymphoma invasion and metastasis protein 1 (Tiam1) was identified as a target gene of hsa-miR-21-5p. CircRNA-ACAP2 and Tiam1 were shown to be highly expressed in colon cancer tissue and colon cancer SW480 cells, but miR-21-5p was expressed at a low level. SW480 cell proliferation was suppressed when the expression of circRNA-ACAP2 and Tiam1 was decreased and the expression of miR-21-5p was increased in vivo and in vitro. SW480 cell migration and invasion were also inhibited under the same circumstance. The circRNA-ACAP2 interaction regulated the expression of miR-21-5p, and miR-21-5p regulated the expression of Tiam1. Down-regulation of circRNA-ACAP2 promoted miR-21-5p expression, which further suppressed the transcription and translation of Tiam1. CONCLUSION: The present study shows that the circRNA-ACAP2/hsa-miR-21-5p/Tiam1 regulatory feedback circuit could affect the proliferation, migration, and invasion of colon cancer SW480 cells. This was probably due to the fact that circRNA-ACAP2 could act as a miRNA sponge to regulate Tiam1 expression by removing the inhibitory effect of miR-21-5p on Tiam1 expression. The results from this study have revealed new insights into the pathogenicity of colon cancer and may provide novel therapeutic targets for the treatment of colon cancer.


Assuntos
Neoplasias do Colo/patologia , Proteínas de Membrana/genética , MicroRNAs/metabolismo , RNA/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Retroalimentação Fisiológica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , RNA/antagonistas & inibidores , RNA/genética , Interferência de RNA , RNA Circular , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/uso terapêutico , Alinhamento de Sequência , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/antagonistas & inibidores , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/genética
8.
Anaerobe ; 44: 58-65, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28161414

RESUMO

Plant lectins are specific carbohydrate-binding proteins that are widespread in legumes such as beans and pulses, seeds, cereals, and many plants used as farm feeds. They are highly resistant to cooking and digestion, reaching the intestinal lumen and/or blood circulation with biological activity. Since many legume lectins trigger harmful local and systemic reactions after their binding to the mucosal surface, these molecules are generally considered anti-nutritive and/or toxic substances. In the gut, specific cell receptors and bacteria may interact with these dietary components, leading to changes in intestinal physiology. It has been proposed that probiotic microorganisms with suitable surface glycosidic moieties could bind to dietary lectins, favoring their elimination from the intestinal lumen or inhibiting their interaction with epithelial cells. In this work, we assessed in vitro the effects of two representative plant lectins, concanavalin A (Con A) and jacalin (AIL) on the proliferation of SW480 colonic adenocarcinoma cells and metabolic activity of colonic microbiota in the absence or presence of Propionibacterium acidipropionici CRL 1198. Both lectins induced proliferation of colonic cells in a dose-dependent manner, whereas ConA inhibited fermentative activities of colonic microbiota. Pre-incubation of propionibacteria with lectins prevented these effects, which could be ascribed to the binding of lectins by bacterial cells since P. acidipropionici CRL 1198 was unable to metabolize these proteins, and its adhesion to colonic cells was reduced after reaction with Con A or AIL. The results suggest that consumption of propionibacteria at the same time as lectins could reduce the incidence of lectin-induced alterations in the gut and may be a tool to protect intestinal physiology.


Assuntos
Proliferação de Células/efeitos dos fármacos , Concanavalina A/metabolismo , Células Epiteliais/efeitos dos fármacos , Lectinas de Plantas/metabolismo , Propionibacteriaceae/crescimento & desenvolvimento , Propionibacteriaceae/metabolismo , Animais , Aderência Bacteriana , Adesão Celular , Linhagem Celular Tumoral , Células Epiteliais/fisiologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Ligação Proteica
9.
J Recept Signal Transduct Res ; 36(2): 167-72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26382555

RESUMO

BACKGROUND: The aim of this study was to investigate the potential effects of the 5, 10, 15, 20-tetrakis (1-methylpyridinium-4-yl) porphyrin (TMPyP4) on the proliferation and apoptosis of SW480 cells and the underlying mechanisms by which TMPyP4 exerted its actions. METHODS: After treated with different doses of TMPyP4, cell viability was determined by MTT method, the apoptosis was observed by flow cytometry (FCM) and the expression of Wnt, GSK-3ß, ß-catenin and cyclinD1 was measured by RT-PCR and Western blot analysis. RESULTS: The analysis revealed that TMPyP4 potently suppressed cell viability and induced the apoptosis of SW480 cells in a dose-dependent manner. In addition, the downregulation of Wnt, ß-catenin and cyclinD1 expression levels was detected in TMPyP4-treated SW480 cells. However, followed by the block of Wnt signaling pathway using siRNA methods, the effects of TMPyP4 on proliferation and apoptosis of SW480 cells were significantly reduced. CONCLUSION: It indicates that the TMPyP4-inhibited proliferation and -induced apoptosis in SW480 cells was accompanied by the suppression of Wnt/ß-catenin signaling pathway. Therefore, TMPyP4 may represent a potential therapeutic method for the treatment of colon carcinoma.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Porfirinas/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , RNA Interferente Pequeno/genética , Via de Sinalização Wnt/efeitos dos fármacos
10.
Int J Biol Macromol ; 245: 125536, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37369256

RESUMO

Colorectal cancer (CRC) is a common and highly malignant neoplasm, ranking as the fourth most frequent cause of cancer-related deaths worldwide. Recently, non-human oncolytic viruses such as Peste des petits ruminants virus (PPRV) are considered as a potent candidate in the viral therapy of cancer. In the current study, the apoptotic effects of matrix (M) protein of PPRV was investigated on SW480 CRC cells. The M gene was cloned into the pcDNA™3.1/Hygro(+) expression vector and transfected into the cancer cells. The cytotoxic effects of the M protein on SW480 cells were confirmed using MTT assay. Furthermore, flow cytometry results showed that the M protein induces apoptosis in 91 % of CRC cells. Interestingly, the expression of the M gene in SW480 cells led to the up-regulation of genes including Bax, p53, and Caspase-9, as well as an increase in the Bax/Bcl-2 ratio. By using bioinformatics modeling, we hypothesized that the M protein could interact with Bax factor through its BH3-like motif and could further activate the intrinsic apoptosis pathway. Ultimately, this study provided the first evidence of the pro-apoptotic activity of PPRV M protein indicating its possible development as a promising novel anti-cancer agent.


Assuntos
Neoplasias Colorretais , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Animais , Humanos , Vírus da Peste dos Pequenos Ruminantes/genética , Proteína X Associada a bcl-2/genética , Apoptose , Cabras
11.
Br J Pharmacol ; 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055379

RESUMO

BACKGROUND AND PURPOSE: Wnt binding to Frizzleds (FZD) is a crucial step that leads to the initiation of signalling cascades governing multiple processes during embryonic development, stem cell regulation and adult tissue homeostasis. Recent efforts have enabled us to shed light on Wnt-FZD pharmacology using overexpressed HEK293 cells. However, assessing ligand binding at endogenous receptor expression levels is important due to differential binding behaviour in a native environment. Here, we study FZD paralogue, FZD7 , and analyse its interactions with Wnt-3a in live CRISPR-Cas9-edited SW480 cells typifying colorectal cancer. EXPERIMENTAL APPROACH: SW480 cells were CRISPR-Cas9-edited to insert a HiBiT tag on the N-terminus of FZD7 , preserving the native signal peptide. These cells were used to study eGFP-Wnt-3a association with endogenous and overexpressed HiBiT-FZD7 using NanoBiT/bioluminescence resonance energy transfer (BRET) and NanoBiT to measure ligand binding and receptor internalization. KEY RESULTS: With this new assay the binding of eGFP-Wnt-3a to endogenous HiBiT-FZD7 was compared with overexpressed receptors. Receptor overexpression results in increased membrane dynamics, leading to an apparent decrease in binding on-rate and consequently in higher, up to 10 times, calculated Kd . Thus, measurements of binding affinities to FZD7 obtained in overexpressed cells are suboptimal compared with the measurements from endogenously expressing cells. CONCLUSIONS AND IMPLICATIONS: Binding affinity measurements in the overexpressing cells fail to replicate ligand binding affinities assessed in a (patho)physiologically relevant context where receptor expression is lower. Therefore, future studies on Wnt-FZD7 binding should be performed using receptors expressed under endogenous promotion.

12.
Nat Prod Res ; : 1-7, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38050768

RESUMO

A new amine, zeaamine (1), along with nine known compounds (2-10), were isolated from the roots of Zea mays. Among these, compound 2 was first isolated from this plant, and compound 3 was first isolated from the roots. In the current investigation, the cytotoxicity against CT26 and SW480 cells of the compounds were evaluated. Zeaamine (1) exhibited moderately affected CT26 and SW480 cells with IC50 values of 17.91 and 10.21 µM.

13.
Int J Pharm ; 588: 119738, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32777534

RESUMO

The major therapeutic limitation of curcumin and indole-incorporated curcumin analog is its low bioavailability. We hypothesized that nano-encapsulation of indole-incorporated curcumin analog and curcumin as a biodegradable polymeric nanoparticle may enhance its bioavailability with extended drug retention time. Indole-incorporated curcumin analog and curcumin loaded PLGA nanoparticles were synthesized by solvent evaporation technique. Physicochemical characterizations and anti-cancer potential of the nanoparticles were evaluated in human colon cancer cell line SW480. The synthesized NPs had a size range of 50-150 nm diameter. The nano-formulation preserved the drug from degradation in wide ranges of pH environments. The nanoparticles treatment against SW480 cancer cell line triggered nuclear fragmentation, cell cycle blockade, inhibition of apoptosis and metastatic biomarkers. These drug-loaded nanoparticles may be potent nano-formulations against colon cancer because of its ability to tolerate extreme pH environments, thus having potential of oral drug-delivery.


Assuntos
Neoplasias do Colo , Curcumina , Preparações de Ação Retardada , Nanopartículas , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Curcumina/administração & dosagem , Portadores de Fármacos , Humanos , Indóis , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polissorbatos
14.
Front Cell Dev Biol ; 8: 586555, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330466

RESUMO

The pathological mechanism of colon cancer is very complicated. Therefore, exploring the molecular basis of the pathogenesis of colon cancer and finding a new therapeutic target has become an urgent problem to be solved in the treatment of colon cancer. ATP plays an important role in regulating the progression of tumor cells. P2 × 7 belongs to ATP ion channel receptor, which is involved in the progression of tumors. In this study, we explored the effect and molecular mechanism of ATP-mediated P2 × 7 receptor on the migration and metastasis of colon cancer cells. The results showed that ATP and BzATP significantly increased the inward current and intracellular calcium concentration of LOVO and SW480 cells, while the use of antagonists (A438079 and AZD9056) could reverse the above phenomenon. We found that ATP promoted the migration and invasion of LOVO and SW480 cells and is dose-dependent on ATP concentration (100-300 µM). Similarly, BzATP (10, 50, and 100 µM) also significantly promoted the migration and invasion of colon cancer cells in a concentration-dependent manner. While P2 × 7 receptor antagonists [A438079 (10 µM), AZD9056 (10 µM)] or P2 × 7 siRNA could significantly inhibit ATP-induced colon cancer cell migration and invasion. Moreover, in vivo experiments showed that ATP-induced activation of P2 × 7 receptor promoted the growth of tumors. Furthermore, P2 × 7 receptor activation down-regulated E-cadherin protein expression and up-regulated MMP-2 mRNA and concentration levels. Knocking down the expression of P2 × 7 receptor could significantly inhibit the increase in the expression of N-cadherin, Vimentin, Zeb1, and Snail induced by ATP. In addition, ATP time-dependently induced the activation of STAT3 via the P2 × 7 receptor, and the STAT3 pathway was required for the ATP-mediated invasion and migration. Our conclusion is that ATP-induced P2 × 7 receptor activation promotes the migration and invasion of colon cancer cells, possibly via the activation of STAT3 pathway. Therefore, the P2 × 7 receptor may be a potential target for the treatment of colon cancer.

15.
J Cancer Res Ther ; 15(1): 32-37, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30880751

RESUMO

BACKGROUND: MicroRNAs are small noncoding RNAs which modulate gene expression at different levels. It has been shown that downregulation of miR-34a occurs in varieties of cancers including colorectal cancer (CRC). In this study, we investigated the potential tumor inhibitory effects of miR-34a alone or in combination with paclitaxel in CRC cells. MATERIALS AND METHODS: SW480 cells were transduced with lentiviral overexpressed miR-34a. First, using 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, the effect of miR-34a induction alone or in combination with paclitaxel on the cell viability and cell proliferation were estimated. Then, the expression level of target genes was measured using quantitative reverse transcription-polymerase chain reaction analysis. Eventually, the role of miR-34a and paclitaxel on cell cycle were determined with flow cytometry. RESULTS: Gene expression analysis showed that miR-34a downregulates the expression of BCL2 and SIRT1 genes at mRNA level. Furthermore, miR-34a has a potential to reduce cell viability and cell cycle arrest at G1 phase. Combination of paclitaxel with overexpression of miR-34a significantly decreased cell viability compared to cell treated with miR-34a or paclitaxel alone. Interestingly, a combination of miR-34a and paclitaxel arrested cell cycle at two phases. CONCLUSION: Our results suggested that combination therapy of miR-34a and paclitaxel could be considered as the potential treatment of CRC.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Colorretais/terapia , Terapia Genética/métodos , MicroRNAs/genética , Paclitaxel/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Terapia Combinada/métodos , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Paclitaxel/farmacologia
16.
Pathol Res Pract ; 215(2): 272-277, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30463804

RESUMO

OBJECTIVE: To investigate the effect of two alternative splicing isoforms of zinc finger protein (ZNF) 148 gene on the invasion and metastasis of human colorectal cancer (CRC) cells and their related mechanisms. METHODS: Quantitative RT-PCR assays were used to detect the expression of twoZNF148 alternative splicing isoforms in SW480 cells. ZNF148FL-siRNA, ZNF148FL-over express vector, ZNF148ΔN-siRNA, and ZNF148ΔN-over express vector were introduced into SW480 cells. The transfection efficiency was confirmed by RT-PCR. The proliferation, invasion, and migration in vitro as well as the apoptosis of SW480 cells were detected by MTT, transwell, scratch assay and flow cytometry, respectively. RESULTS: Both ZNF148FL and ZNF148ΔN were expressed in SW480 cells, and the level of ZNF148FL protein was higher than ZNF148ΔN. After ZNF148FL-siRNA and ZNF148ΔN-over express transfection, the expression level of ZNF148FL and ZNF148ΔN were significantly decreased and increased, respectively. In contrast, the expression of ZNF148FL and ZNF148ΔN were significantly increased and decreased, respectively, after ZNF148FL-over express and ZNF148ΔN-siRNA transfection (all P < 0.05). The proliferation of SW480 cells was increased in ZNF148FL-over express group and the ZNF148ΔN-siRNA group, while decreased in ZNF148FL-siRNA group and ZNF148ΔN-over express group. The invaded cell number and migrated distance in ZNF148FL-siRNA group and ZNF148ΔN-over express group were significantly decreased, but the apoptotic rate was significantly increased. In contrast, ZNF148FL-over express and ZNF148ΔN-siRNA group showed the significantly increased ability of invasion and migration but decreased apoptosis rate (all P < 0.05). CONCLUSION: ZNF148FL could increase proliferation, invasion, and migration of CRC cells, while ZNF148ΔN showed opposite effect; the two splicing isoforms of ZNF148 may exert a mutual antagonistic effect to each other on the malignant biological activities.


Assuntos
Apoptose/genética , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/genética , Invasividade Neoplásica/patologia , Fatores de Transcrição/genética , Processamento Alternativo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Humanos , Invasividade Neoplásica/genética , Isoformas de Proteínas
17.
Toxicol In Vitro ; 61: 104599, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31306737

RESUMO

Traditional 2D monolayer cell culture model may overestimate chemopreventive agent's response due to lacking physiological relevance in three-dimensional microenvironment. This study was aimed to apply a novel 3D h9e peptide hydrogel cell culture system to evaluate the anticancer efficacy of chemopreventive phenolic acid on hepatocarcinoma HepG2 and colon adenocarcinoma SW480 cells. Both cell lines grew better in this 3D system with better cell growth and longer exponential phase than that in 2D model. Chlorogenic acid (CGA), known as a chemopreventive phenolic acid, at 0-40 µM for 72 h inhibited cell growth but not viability in both HepG2 and SW480 cells. The inhibition was much less potent in 3D system with an IC50 value of 58.0 ±â€¯15.8 or 285.6 ±â€¯75.4 µM when compared with 2D model with IC50 of 5.3 ±â€¯0.3 or 12.0 ±â€¯2.5 µM for HepG2 or SW480, respectively. Furthermore, the recovery of cells grown in 3D system after post-CGA appeared faster than 2D model. Taken together, an advanced 3D model has been established with favoring cell growth and less susceptible to inhibitory treatments in contrast to 2D model, thus predict closely to in vivo situation and may bridge the gap of in vitro to in vivo for prescreening chemopreventive agents for cancer prevention.


Assuntos
Anticarcinógenos/farmacologia , Antineoplásicos/farmacologia , Técnicas de Cultura de Células , Ácido Clorogênico/farmacologia , Hidrogéis , Peptídeos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Fenóis
18.
Biomed Pharmacother ; 103: 729-737, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29684851

RESUMO

Mutations and reductions in mitochondrial DNA (mtDNA), which are frequent in human tumors, may contribute to enhancing their malignant phenotypes. However, the effects of mtDNA abnormalities in colorectal cancer remain largely unknown. In this study, mtDNA-reduced cell model was established by partial depletion of mtDNA in SW480 cells and the effects of mtDNA reduction in colorectal cancer cells were investigated. We found that mtDNA-reduced cells had enhanced glucose uptake and generated markedly higher level of lactate. These changes were accompanied by only a slight reduction in ATP production compared with the parent cells. Furthermore, the activity of the glycolytic enzymes, hexokinase (HK) and phosphofructokinase (PFK), was increased in mtDNA-reduced cells. These results suggested a switch to aerobic glycolysis in mtDNA-reduced cells, which helped the cells to gain a survival advantage. Notably, when mtDNA content was restored, metabolism returned to normal. In addition, the mtDNA-reduced cells were highly resistant to 5-fluorouracil- and oxaliplatin-induced apoptosis and this drug resistance was reversible following recovery of the mtDNA content. We also found that the Akt/mTOR pathway was activated in the mtDNA-reduced cells. This pathway might play a significant role in drug resistance in the mtDNA-reduced cells as drug susceptibility was restored when this pathway was inhibited. Taken together, our results supported the notion that mtDNA reduction induced aerobic glycolysis and a reversible apoptosis-resistant phenotype in SW480 cells, and that the Akt/mTOR pathway might be involved in the drugs-induced apoptosis resistance.


Assuntos
Antineoplásicos/farmacologia , Apoptose/fisiologia , Neoplasias Colorretais/metabolismo , DNA Mitocondrial/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glicólise/fisiologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo
19.
Int J Clin Exp Med ; 7(12): 4867-76, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25663983

RESUMO

OBJECTIVE: This study is to investigate the antitumor effects and possible mechanisms of chlorin e6-mediated photodynamic therapy (Ce6-PDT) on human colon cancer SW480 cells. METHODS: SW480 cells were treated with Ce6, followed by photodynamic irradiation. Subcellular localization of Ce6 in SW480 cells was observed with confocal laser scanning microscopy (LSCM). Reactive oxygen species (ROS) levels were monitored with fluorescence microscopy. Cell proliferation and apoptosis were detected by the MTT assay and flow cytometry, respectively. Scratch test and colony formation assay were employed to analyze the cell migration ability and colony formation ability. RESULTS: LSCM showed that, in SW480 cells, Ce6 was evenly distributed within the ER and lysosomes, with nearly no distribution in the mitochondria and nuclei. When SW480 cells were subjected to Ce6-PDT, the ROS levels would be elevated, in a dose-dependent manner. Moreover, Ce6-PDT treatment could inhibit the cell proliferation and enhance the apoptotic process, in SW480 cells. However, Ce6 treatment alone without photodynamic irradiation could not induce any significant differences in the cell proliferation and apoptosis. In addition, the migration ability and colony formation ability of SW480 cells were decreased by Ce6-PDT treatment at appropriate dosages. CONCLUSION: Ce6-PDT treatment could enhance ROS production and apoptosis, inhibit cell proliferation, decrease migration ability and colony formation ability, in SW480 cells, in a dose-dependent manner. These findings might provide experimental evidence for the application of Ce6-PDT in clinical treatment of colorectal cancer.

20.
Chem Biol Interact ; 219: 1-8, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24858077

RESUMO

Cucurbitacin-I is a triterpenoids found in medicinal plants and have diverse pharmacological and biological activities. In this study, the antitumor effects of cucurbitacin-I on colon cancer and possible roles in apoptosis and cell cycle arrest were investigated. Treatment of SW480 cells, a human colon cancer cells, with cucurbitacin-I decreased cell viability and cell proliferation in a concentration-dependent manner. Also, cucurbitacin-I induced G2/M phase cell cycle arrest in SW480 cells with a decreased expression of cell cycle proteins including cyclin B1, cyclin A, CDK1, and CDC25C. Moreover, cucurbitacin-I induced increased cleavage of caspase-3, -7, -8, -9, and poly ADP ribose polymerase. When we examined the inhibitory effect of cucurbitacin-I on tumor growth in vivo, cucurbitacin-I effectively inhibited the tumorigenicity and growth of CT-26 cells in syngenic BALB/c mice. In summary, the present study showed that cucurbitacin-I reduced colon cancer cell proliferation by enhancing apoptosis and causing cell cycle arrest at the G2/M phase.


Assuntos
Apoptose/fisiologia , Pontos de Checagem do Ciclo Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Cucurbitaceae/química , Triterpenos/farmacologia , Animais , Western Blotting , Proteína Quinase CDC2 , Caspases/metabolismo , Linhagem Celular Tumoral , Ciclina A/análise , Ciclina A/metabolismo , Ciclina B1/análise , Ciclina B1/metabolismo , Quinases Ciclina-Dependentes/análise , Quinases Ciclina-Dependentes/metabolismo , Citometria de Fluxo , Humanos , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/tratamento farmacológico , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Triterpenos/uso terapêutico , Fosfatases cdc25/análise , Fosfatases cdc25/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA