RESUMO
Land use/land cover (LULC) is a crucial factor that directly influences the hydrology and water resources of a watershed. In order to assess the impacts of LULC changes on river runoff in the Danjiang River source area, we analyzed the characteristics of LULC data for three time periods (2000, 2010, and 2020). The LULC changes during these periods were quantified, and three Soil and Water Assessment Tool (SWAT) models were established and combined with eight LULC scenarios to quantitatively analyze the effects of LULC changes on river runoff. The results revealed a decrease in the cropland area and an increase in the forest, grassland, and urban land areas from 2000 to 2020. Grassland, forest, and cropland collectively accounted for over 94% of the total area, and conversions among these land types were frequent. The SWAT models constructed based on the LULC data demonstrated good calibration and validation results. Based on the LULC data in three periods, the area of each LULC type changed slightly, so the simulation results were not significantly different. In the subsequent LULC scenarios, we found that the expansion of cropland, grassland, and urban areas was associated with increased river runoff, while an increase in forest area led to a decrease in river runoff. Among the various LULC types, urban land exerted the greatest influence on changes in river runoff. This study establishes three SWAT models and combines multiple LULC scenarios, which is novel and innovative. It can provide scientific basis for the rational allocation of water resources and the optimization of LULC structure in the Danjiang River source area.
Assuntos
Solo , Movimentos da Água , Rios , Água , Hidrologia/métodos , ChinaRESUMO
Stream flow forecasting is a crucial aspect of hydrology and water resource management. This study explores stream flow forecasting using two distinct models: the Soil and Water Assessment Tool (SWAT) and a hybrid M5P model tree. The research specifically targets the daily stream flow predictions at the MH Halli gauge stations, located along the Hemvati River in Karnataka, India. A 14-year dataset spanning from 2003 to 2017 is divided into two subsets for model calibration and validation. The SWAT model's performance is evaluated by comparing its predictions to observed stream flow data. Residual time series values resulting from this comparison are then resolved using the M5P model tree. The findings reveal that the hybrid M5P tree model surpasses the SWAT model in terms of various evaluation metrics, including root-mean-square error, coefficient of determination (R2), Nash-Sutcliffe efficiency, and degree of agreement (d) for the MH Halli stations. In conclusion, this study shows the effectiveness of the hybrid M5P tree model in stream flow forecasting. The research contributes valuable insights into improved water resource management and underscores the importance of selecting appropriate models based on their performance and suitability for specific hydrological forecasting tasks.
Assuntos
Modelos Teóricos , Chuva , Índia , Rios , Movimentos da Água , Hidrologia , Monitoramento Ambiental/métodos , PrevisõesRESUMO
Hydrological models are vital tools in environmental management. Weaknesses in model robustness for hydrological parameters transfer uncertainties to the model outputs. For streamflow, the optimized parameters are the primary source of uncertainty. A reliable calibration approach that reduces prediction uncertainty in model simulations is crucial for enhancing model robustness and reliability. The optimization of parameter ranges is a key aspect of parameter calibration, yet there is a lack of literature addressing the optimization of parameter ranges in hydrological models. In this paper, we introduce a parameter calibration strategy that applies a clustering technique, specifically the Self-Organizing Map (SM), to intelligently navigate the parameter space during the calibration of the Soil and Water Assessment Tool (SWAT) model for monthly streamflow simulation in the Baishan Basin, Jilin Province, China. We selected the representative algorithm, the Sequential Uncertainty Fitting version 2 (SUFI-2), from the commonly used SWAT Calibration and Uncertainty Programs for comparison. We developed three schemes: SUFI-2, SUFI-2-Narrowing Down (SUFI-2-ND), and SM. Multiple diagnostic error metrics were used to compare simulation accuracy and prediction uncertainty. Among all schemes, SM outperformed the others in describing watershed streamflow, particularly excelling in the simulation of spring snowmelt runoff (baseflow period). Additionally, the prediction uncertainty was effectively controlled, demonstrating the SM's adaptability and reliability in the interval optimization process. This provides managers with more credible prediction results, highlighting its potential as a valuable calibration tool in hydrological modeling.
Assuntos
Hidrologia , Calibragem , Modelos Teóricos , Algoritmos , Incerteza , China , SoloRESUMO
With increasing temperatures, changing weather patterns and ongoing development, it is becoming increasingly important to clarify the evolution mechanism of future regional streamflow processes and their controlling factors. In this study, an integrated framework for watershed streamflow prediction based on a Global Climate Model (GCM), the Patch-generating Land Use Simulation model (PLUS), and the Soil and Water Assessment Tool (SWAT) was proposed in the middle Yellow River. The results indicate that, compared with the baseline period (1989-2018), levels of precipitation and maximum and minimum temperatures are expected to increase in the next 30 years, resulting in a warmer and wetter regional climate. Under various climate scenarios, the annual streamflow is projected to increase by 49.2-115.1%. The acreage of various land types may have tended to be saturated, and the main land types such as cropland, forest and grassland have little change (-6.6%-0.6%), so the impact on streamflow will be correspondingly reduced. Under various land use scenarios, the annual streamflow is projected to increase by 5.0%-7.3%. The annual average streamflow trends under the combined climate and land use scenarios are consistent with the climate change scenarios, while the mean values corresponding to the combined scenarios are higher than those of the single scenario. Findings show that climate change is the main driver influencing streamflow, with a contribution of 86.3%-95.1%. This study deepens understanding of the change pattern and influence mechanism of the streamflow process, which can provide a scientific basis for the development and refinement of regional ecological construction plans.
RESUMO
Balancing environmental protection and social-economic development in agricultural land use management is a dilemma for decision-makers. Based on the modelling of the impacts of land use changes on river water pollution by SWAT model, the tradeoff between tea plantation expansion and river water quality was detected. SWAT model performs well in simulating the non-point source (NPS) pollution in agricultural watershed. The results showed that the tea plantation area expanded dramatically from 44 km2 in 2000 to 169 km2 in 2020 at the high cost of forest land. Consequently, the mean contents of NO3--N and TN have significantly increased by 100% and 91% respectively in the past 20 years. And the NO3--N in river water accounted for over 80% of TN in the tea plantation area. The NO3--N and TN concentrations were positively related with the proportions of tea plantation area (Tea%) at different periods. The high pollution levels of NO3--N and TN are priority control targets for river water quality management. The results indicated that the proportion of tea plantation thresholds lead to abrupt changes in river water quality. When the Tea% exceeded 3.0% in 2000, the probability of N pollution increased sharply. Whereas in 2020, it is suggested that the Tea% should not exceeds 18% to avoid sudden deterioration of water quality. The critical interval value of the Tea% for sudden change in N pollution showed an obvious increase tendency. The accelerating of nutrient pollution in rivers reduced the sensitivity of water quality to tea plantation expansion. Our results can provide new insights and empirical evidence for balancing the tradeoff between agricultural development and river water quality protection by demonstrating the carrying capacity threshold of river water environment for the expansion tea plantation.
Assuntos
Agricultura , Rios , Poluição da Água , Rios/química , Poluição da Água/análise , Qualidade da Água , Monitoramento AmbientalRESUMO
Managing landscape change is increasingly challenging due to rapid anthropogenic shifts. A delicate balance must be struck between the environment and change to ensure landscapes can withstand these impacts. This study conducted in the Tunca River sub-basin of Edirne province, aims to assess landscape sensitivity by examining the influence of land use/land cover (LULC) and climate change on landscape function processes. For this purpose, a methodology was developed based on ecosystem services to determine landscape sensitivity. The results revealed a LULC transformation that could lead to a 60% reduction in forest areas and a 5% and 20% increase in urban and irrigated agricultural areas, respectively. Water and erosion emerged as the most affected landscape function processes. Future scenarios from 2050 to 2070 indicate noteworthy changes in landscape sensitivity, showing an increase in sensitivity in the upper regions of the basin. The study identified high sensitivity in forested areas, moderate sensitivity in agricultural zones, and low sensitivity in micro-basins near residential areas. Protection and improvement strategies are recommended for areas with high and moderate sensitivity, while use-oriented strategies are suggested for those with low sensitivity. This study also establishes a scientific foundation for guiding the protection and management of ecologically sensitive basin areas, offering insights into the effects of landscape change processes at the micro-basin level in connection with climate change models.
Assuntos
Agricultura , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Rios , FlorestasRESUMO
The establishment of river water quality monitoring network is crucial for watershed protection. However, the evaluation process of monitoring network layout involves significant subjectivity and has not yet to form a complete indicator system. This study constructed an indicator system based on the DPSR (Driving-Pressure-State-Response) framework in the Liao River Basin, China. SWAT model and ArcGIS were used to quantify the indicators. And the entropy weight-TOPSIS method was employed to rank monitoring points. The results showed that pressure and state indicators had a greater impact on the network layout, with the indicator for proportion of land use in residential areas carrying the largest weight of 0.136. It suggested that the risk of river pollution remained high, and the governance strategies needed to be improved. Priority monitoring points were mainly located in the east and middle of the basin, consistent with the distribution of human activities such as urban areas and farmland. In addition, the redundancy of points should be avoided, and evaluation results should be adjusted based on the actual situation. The study provided an evaluation method for the layout of monitoring points.
Assuntos
Monitoramento Ambiental , Rios , Qualidade da Água , China , Monitoramento Ambiental/métodos , Entropia , Modelos TeóricosRESUMO
The study investigated the impact of climate and land cover change on water quality. The novel contribution of the study was to investigate the individual and combined impacts of climate and land cover change on water quality with high spatial and temporal resolution in a basin in Turkey. The global circulation model MPI-ESM-MR was dynamically downscaled to 10-km resolution under the RCP8.5 emission scenario. The Soil and Water Assessment Tool (SWAT) was used to model stream flow and nitrate loads. The land cover model outputs that were produced by the Land Change Modeler (LCM) were used for these simulation studies. Results revealed that decreasing precipitation intensity driven by climate change could significantly reduce nitrate transport to surface waters. In the 2075-2100 period, nitrate-nitrogen (NO3-N) loads transported to surface water decreased by more than 75%. Furthermore, the transition predominantly from forestry to pastoral farming systems increased loads by about 6%. The study results indicated that fine-resolution land use and climate data lead to better model performance. Environmental managers can also benefit greatly from the LCM-based forecast of land use changes and the SWAT model's attribution of changes in water quality to land use changes.
Assuntos
Mudança Climática , Nitratos , Monitoramento Ambiental , Transporte Biológico , Agricultura , SoloRESUMO
This study establishes a calibrated SWAT (Soil and Water Assessment Tool) model for the Huntai Basin, driven by SSP126, SSP245, SSP585, and multi-model ensemble (MME) models in CMIP6 (Coupled Model Intercomparison Project-6), to investigate the effects of climate change on hydrological processes and pollution load in the Huntai Basin. The results show that the annual mean temperature and the annual precipitation will gradually increase. The nitrogen and phosphorus pollution loads in the basin exhibit a trend of decreasing-increasing-decreasing. The correlation between the nitrogen-phosphorus pollution load and the hydrological process strengthens with increasing radiative forcing. In the four scenarios, CO2 is a primary driving factor that contributes greatly to nitrogen and phosphorus pollution. The main differences are in the total driving factors, and SSP126 and SSP245 are less than those of other models. The total phosphorus and total nitrogen pollution in different climate models were higher than the average level during the benchmark period, except for ammonia nitrogen pollution, which was lower. The nitrogen and phosphorus pollution in SSP126 and SSP245 modes will reach the maximum in 2040s, and the pollution in other periods will be lower than that in SSP585 and MME scenarios. In the long run, the development state between SSP126 and SSP245 may be better appropriate for the Huntai Basin's future sustainable development. This paper analyzes the occurrence and influencing factors of nitrogen and phosphorus pollution under climate change to provide reference to the protection of water environment under changing environments.
Assuntos
Mudança Climática , Endrin/análogos & derivados , Monitoramento Ambiental , Nitrogênio , Fósforo , ÁguaRESUMO
The determination of critical management areas for nitrogen (N) and phosphorus (P) losses in large-scale basins is critical to reduce costs and improve efficiency. In this study, the spatial and temporal characteristics of the N and P losses in the Jialing River from 2000 to 2019 were calculated based on the Soil and Water Assessment Tool (SWAT) model. The trends were analyzed using the Theil-Sen median analysis and Mann-Kendall test. The Getis-Ord Gi* was used to determine significant coldspot and hotspot regions to identify critical regions and priorities for regional management. The ranges of the annual average unit load losses for N and P in the Jialing River were 1.21-54.53 kg ha-1 and 0.05-1.35 kg ha-1, respectively. The interannual variations in both N and P losses showed decreasing trends, with change rates of 0.327 and 0.003 kg ha-1·a-1 and change magnitudes of 50.96% and 41.05%, respectively. N and P losses were highest in the summer and lowest in the winter. The coldspot regions for N loss were clustered northwest of the upstream Jialing River and north of Fujiang River. The coldspot regions for P loss were clustered in the central, western, and northern areas of the upstream Jialing River. The above regions were found to be not critical for management. The hotspot regions for N loss were clustered in the south of the upstream Jialing River, the central-western and southern areas of the Fujiang River, and the central area of the Qujiang River. The hotspot regions for P loss were clustered in the south-central area of the upstream Jialing River, the southern and northern areas of the middle and downstream Jialing River, the western and southern areas of the Fujiang River, and the southern area of the Qujiang River. The above regions were found to be critical for management. There was a significant difference between the high load area for N and the hotspot regions, while the high load region for P was consistent with the hotspot regions. The coldspot and hotspot regions for N would change locally in spring and winter, and the coldspot and hotspot regions for P would change locally in summer and winter, respectively. Therefore, managers should make specific adjustments in critical regions for different pollutants according to seasonal characteristics when developing management programs.
Assuntos
Fósforo , Poluentes Químicos da Água , Fósforo/análise , Nitrogênio/análise , Rios , Poluentes Químicos da Água/análise , Estações do Ano , China , Monitoramento AmbientalRESUMO
Rainfall plays a crucial role in influencing the loss of agricultural diffuse pollution. The middle Yangtze River region is well-know for its humid climate and numerous agricultural activities. Thus, this study quantitatively analyzed the concentration and distribution of nitrogen (N) and phosphorus (P) load and loss in a major tributary of the middle Yangtze River under different rainfall patterns by using sampling analysis and SWAT model simulation. The total nitrogen (TN) and nitrate-nitrogen (NO3-) concentrations were 1.604-3.574 and 0.830-2.556 mg/L, respectively. The total phosphorous (TP) and Soluble Reactive Phosphorus (SRP) were 2-148 and 2-104 µg/L, respectively. The modeling results demonstrated that higher rainfall intensity led to greater load and loss flux of diffuse pollutant at the outlet. Organic nitrogen (ORGN) is the main nitrogen form transported from the subbasin to the reach, while organic phosphorus (ORGP) and inorganic phosphorus (INORGP) were transported at similar amounts. Under the condition of conventional rainfall, the outlet reaches mainly transported NO3-, and ORGN gradually increased when rainstorm events occurred. The ratio of INORGP to ORGP was relatively stable. During extreme rainfall event, rainfall is the dominant element of agricultural diffuse pollution. A strong positive correlation exists between rainfall intensity and pollution loss during rainstorms. Storm rain events were the main source of TN and TP losses. Few storm rain days generated pollutants that accounted for a large proportion of the total loss, and their impact on TP loss was significantly greater than that of TN. The influence of storm rain on TN is mainly the increase in runoff, while TP is sensitive to the runoff and sediment transport promoted by rainfall. By setting different precipitation scenarios, it was confirmed that under the same rainfall amount, short-term storm rain has the most significant impact on the TN load, whereas TP load may be influenced more by the combined effects of rainfall duration and intensity. Therefore, to reduce the impact of agricultural diffuse pollution, it is important to take targeted measures for the rainstorm days.
Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Rios , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Movimentos da Água , Fósforo/análise , Poluentes Ambientais/análise , Nitrogênio/análise , Chuva , ChinaRESUMO
Water conservation (WC) is an essential terrestrial ecosystem service that mitigates surface runoff and replenishes groundwater, which has received considerable attention under the dual pressures of climate change and human activity. However, there is insufficient understanding of the trends in WC changes on temporal (annual, monthly, daily), spatial, and ecosystem scales. This study proposed a quantitative assessment methodology framework (QAMF) for analyzing the spatiotemporal variation of WC under different discontinuous ecosystems. The QAMF mainly used models and methods such as the hydrological model (SWAT), calibration and uncertainty program (SWAT-CUP), WC calculation formula (water balance method), and spatial analysis method (empirical orthogonal function and wavelet analysis). It was applied to the source region of the Yellow River (SRYR), where the ecological landscape pattern underwent varying degrees of degradation, and WC capacity decreased. The results show that: Firstly, the constructed SWAT in the SRYR had high accuracy, and the proposed formula for calculating WC was suitable for multi-temporal scale analysis of WC in spatially distributed discontinuous basins. Secondly, the annual and monthly WC were respectively 81.00-184.13 mm and -28.58-107.64 mm, and daily WC was positive during extreme precipitation periods and negative during dry periods. The regulating effect of WC was fully reflected on the daily scale, partially reflected on the monthly scale, and absent on the annual scale. Third, the crucial WC area was mainly distributed in the southeast, and there was a significant primary yearly cycle of WC in the SRYR. Finally, different ecosystems exhibited different WC capabilities, and protecting the diversity of ecosystems played an essential role in maintaining and improving the WC function in the SRYR. This project has great scientific significance and technological support for scientifically evaluating the WC capacity in the SRYR.
Assuntos
Conservação dos Recursos Hídricos , Água Subterrânea , Humanos , Ecossistema , Rios , Água , ChinaRESUMO
Grazing management is an important factor affecting the delivery of ecosystem services at the watershed scale. Moreover, characterizing the impacts of climate variation on water resources is essential in managing rangelands. In this study, the effects of alternative grazing management scenarios on provisioning, regulating, and supporting services were assessed in two watersheds with contrasting climates; the Lower Prairie Dog Town Fork Red River (LPDTFR) Watershed in North Texas and the Apple Watershed in South Dakota. The impacts of heavy stocking continuous grazing, light stocking continuous grazing, Adaptive Multi-Paddock (AMP) grazing, and an ungrazed exclosure were compared using the Soil and Water Assessment Tool (SWAT) model. Our results indicate that the quantity of snow and timing of snow melt substantially influenced grazing management effects on ecosystem services in the Apple Watershed. In contrast, precipitation was the main factor influencing these effects in the LPDTFR Watershed because it highly affected the variation in water cycling, streamflow, sediment, and nutrient controls. Simulated results indicated that AMP grazing was the optimal grazing management approach for enhancing water conservation and ecosystem services in both watersheds regardless of climatic conditions. The Apple Watershed, which is a snow-dominated watershed, exhibited greater ecosystem service improvements under AMP grazing (50.6%, 58.7%, 74.4%, 61.5% and 72.6% reduction in surface runoff, streamflow, and sediment, total nitrogen (TN) and total phosphorus (TP) losses, respectively as compared to HC grazing) than the LPDTFR Watershed (46.0%, 22.8%, 34.1%, 18.9% and 38.4% reduction in surface runoff, streamflow, and sediment, TN and TP losses, respectively). Our results suggest that improved grazing management practices enhance ecosystem services and water catchment functions in rangeland-dominated areas, especially in colder climates.
Assuntos
Ecossistema , Solo , North Dakota , Texas , ÁguaRESUMO
Water conservation function is a critical terrestrial ecosystem service in providing water supply and achieving water security, which has raised concerns under the pressure of climate change. However, the knowledge of variance on multi-time scale, spatiotemporal dynamic, and ecosystem variance of water conservation is insufficient. In this paper, the annual, monthly, and daily scales of water conservation and the spatiotemporal pattern of monthly water conservation were estimated based on the SWAT model from 2010 to 2020 in the Heihe River Basin (HRB). Additionally, EOF (Empirical orthogonal function) analysis was conducted to decompose the time series of water conservation function distribution into temporal coefficients and spatial patterns. The HRB was categorized into six representative ecosystems with three slope grades to illustrate the variance of water conservation function. The annual water conservation depth (WC) slightly decreased (-10.36 mm/10a) from 2010 to 2020, the monthly WC was dominated by the effects of seasonal variation, and the daily WC was highly nonlinear. The high variability and importance region is mainly located in the upstream and the central area of midstream, which deserves more attention for ecological management and priority protection. Moreover, the forest ecosystem is of the highest resilience and great ecological significance, which increased risk of reduced water conservation under the lack of precipitation. Even in a forest-dominated basin, water conservation can be impacted by other ecosystems with the strong influence of human activities. Our results provide scientific evidence for the improvement of water conservation capacity and making the adapted land use policy in Yellow River basins.
Assuntos
Conservação dos Recursos Hídricos , Humanos , Ecossistema , Rios , Florestas , Mudança ClimáticaRESUMO
This study aimed at evaluating the scale and costs of an environmentally and economically optimal set of Best Management Practices (BMPs) for agricultural pollution abatement in Lithuania in order to reach water protection goals in both inland and marine waters by distributing BMPs optimally in space, while taking climate change impacts into consideration. The assessment of BMPs impact involved the use of the SWAT model by applying two climate change representative concentration pathways (RCP4.5 and RCP8.5) and two time horizons (mid-century and end-century), as well as five BMPs (arable land conversion to grasslands, reduced fertilization, no-till farming, catch-crops, and stubble fields throughout winter). The optimization of the set of BMPs employed a genetic algorithm. The results suggest that the need for BMPs application will increase from 52% of agricultural areas in the historical period up to 65% by the end of century in the RCP8.5 scenario. This means less arable land could actually be used for crop production in the future if water protection targets are met. The high costs for reaching water targets would rise even more, i.e. by 173% for RCP4.5, and by 220% for the RCP8.5 scenario, reaching approximately 200 million euros/year. In such a context, the BMP optimization approach is essential for significant reduction of the costs. Winter cover crops and reduced fertilization show the best effectiveness and cost balance, and will therefore be essential in pursuing water protection targets.
Assuntos
Mudança Climática , Água , Objetivos , Lituânia , Agricultura/métodos , Poluição da Água/prevenção & controle , Produtos AgrícolasRESUMO
Inter-basin water transfer (IBWT) projects have been widely constructed to alleviate the pressure on water resources in water shortage basins. However, the ecological effects of IBWT projects have often been ignored. Based on the Soil and Water Assessment Tool (SWAT) model and a constructed total ecosystem services (TES) index, the impacts of IBWT projects on recipient basin ecosystem services were analyzed in this study. The results showed that the TES index was relatively stable from 2010 to 2020, but in the wet season it was 1.36 times that of the other months with high water yield and nutrient loads. Spatially, areas with high index values were mainly distributed in the sub-basins around the reservoirs. The IBWT projects had positive impacts on ecosystem services, and the TES index with IBWT projects was 5.98% higher than that without projects. Water yield and total nitrogen were the two most affected indexes, with increased of 5.65% and 5.41%, respectively, under the impacts of IBWT projects. Seasonally, the change rates of the TES index were less than 3% while the change rates of water yield and nitrogen load peaked at 8.23% and 53.42%, respectively, in March, owing to the large amount of water released from the reservoirs. Areas affected by the three evaluated IBWT projects accounted for 61%, 18%, and 11% of the watershed, respectively. Under the impact of each project, the TES index generally increased, whereas the impact decreased as the distance from the inflow location increased. Intense changes in ecosystem services occurred in sub-basin 23, the sub-basin closest to an IBWT project, with water yield, water flow, and local climate regulation increasing the largest.
Assuntos
Ecossistema , Rios , Solo , Água , Monitoramento Ambiental , Nitrogênio/análiseRESUMO
Identification of critical source areas (CSAs) for non-point source (NPS) pollution is of great significance for environment governance and prevention. However, the CSAs are generally characterized as great spatial dispersion, and spatially heterogeneous precipitation has a great influence on the spatial distribution of nutrient yields. Therefore, we identify the CSAs for nutrient yields in an agricultural watershed of Northeast China at hydrological response units (HRUs) scale based on the Soil and Water Assessment Tool (SWAT), assess the impacts of spatially heterogeneity of precipitation on the identification of the CSAs, analyze the sensitivity of nutrient yields to precipitation by scenarios analysis method, and further identify priority management areas (PMAs) that have poor ability to retain nutrients. The results showed that the CSAs for nutrient yields identified by uniform precipitation showed greater fluctuation range and coverage area than actual precipitation; the major prevention areas of total nitrogen (TN) yield were mainly distributed in regions nearby main stem of lower reaches, while that of total phosphorus (TP) yield were mostly located in urban area nearby outlet of the watershed; the identification of the PMAs significantly decreased the CSAs for TN yield, whereas that for TP yield was no significant difference with the CSAs. This study could provide scientific guidance for the NPS pollution governance and prevention.
Assuntos
Poluição Difusa , Poluentes Químicos da Água , Agricultura/métodos , China , Monitoramento Ambiental/métodos , Nitrogênio/análise , Poluição Difusa/análise , Fósforo/análise , Rios , Poluentes Químicos da Água/análiseRESUMO
Assessing the relative contribution of Land Use and Cover Changes (LUCC) and climate changes on runoff still represents a great challenge for water resources management. This issue is particularly critical for the Upper Paraná River Basin (UPRB), one of the most important basins in South America and responsible for most of the production of food, ethanol, and electricity generation in Brazil. In this paper, we used the Soil and Water Assessment Tool (SWAT) to quantitatively assess the relative contribution of both forcings. The simulation period included a time of great importance for climate studies, known as the 1970s global climate shift, and of great impact on river discharge within the UPRB. Three land use and cover scenarios were assigned to the 1961-1990 period of simulations, representing land use and cover during a pristine period (around the Year 1500), 1960, and 1985. Thirteen years of precipitation before and after the climate shift (considered to be the period 1974-1977) were analyzed and compared. Results showed a precipitation increase for the basin in general after the climate shift. The increase in rainfall reached up to 15% in many northern areas and more than 20% in the southern parts of the basin. By comparing all simulations, results indicate that both LUCC and precipitation increase due to the climate shift had a significant effect on the changes in annual discharge of the largest rivers of the UPRB. However, the results suggest that the impact of the precipitation increase on the discharge exceeded that of the LUCC. Between 1960 and 1985 the LUCC accounts for about 16% of the increase of the median annual discharge, whereas climate shift accounts for an increase of about 32%. These findings, suggesting a more relevant role for the climate, are consistent with two recent water crisis experienced by the country in the last decades, caused by prolonged below-normal rainfall throughout 2001/2002 and again in 2014/2015.
Assuntos
Monitoramento Ambiental , Rios , Brasil , Mudança Climática , Monitoramento Ambiental/métodos , SoloRESUMO
The quantitative evaluation of water conservation in the Luoyang area can provide a basis for decision-making on regional water resources development and utilization, ecological environmental protection, and economic development planning. Based on the SWAT model and alternative engineering method, the water conservation and its service value in Luoyang region from 2009 to 2018 were assessed and the reasons for their spatial and temporal changes were analyzed. The results show that during the period of 2009-2018, the total water connotation and its service value reached the highest in 2014, with 16,927,100 m3 and 103 million yuan, respectively; the total water connotation and its service value reached the lowest in 2011, with 7,073,500 m3 and 43,224,000 yuan, respectively. Forest ecosystems have a strong water retention and storage capacity, and the highest water conservation and service value. Precipitation is the most important factor influencing water conservation and service value. The value of water-supporting services per unit area of ecosystem in Luoyang area is forest, grassland, arable land, and urban in descending order.
Assuntos
Conservação dos Recursos Hídricos , Ecossistema , Conservação dos Recursos Naturais , Monitoramento Ambiental , ÁguaRESUMO
This study presents hydrological impacts of future climate change (CC) and land use/cover change (LUCC) for the Srepok River Basin (SRB) in the Vietnam's Central Highlands. The hydrology cycle of this basin was reproduced using Soil and Water Assessment Tool (SWAT) allowing an evaluation of hydrological responses to CC and LUCC. Future climate scenarios of the 2015-2100 period under Representative Concentration Pathways (RCP) 4.5 simulated by five General Circulation Models (GCMs) and LUCC scenario in 2050 were developed. Compared to the reference scenario (1980-2005), future LUCC increases the streamflow (0.25%) and surface runoff (1.2%) and reduces the groundwater discharge (2.1%). Climate change may cause upward trends in streamflow (0.1 to 2.7%), surface runoff (0.4 to 4.3%), and evapotranspiration (0.8 to 3%), and a change in the groundwater discharge (- 1.7 to 0.1%). The combination of CC and LUCC increases the streamflow (0.2 to 2.8%), surface runoff (1.6 to 5.6%), and evapotranspiration (1.0 to 3.1%), and reduces the groundwater discharge (1.5 to 2.7%) with respect to the reference scenario. Moreover, the results noted that the water scarcity may happen in the dry-seasonal months.