Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Electrophoresis ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415778

RESUMO

The work describes the use of SYBR Gold to improve the detection sensitivity of plasmid DNA topoisomers by capillary gel electrophoresis with laser induced fluorescence in an uncoated capillary. The impact of different dyes, including ethidium bromide, SYBR Green and SYBR Gold, was compared based on detection and separation of DNA plasmid topoisomers. Use of SYBR Gold enabled improvement of detection sensitivity by 15-fold while maintaining good separation resolution of the different topoisomers. The baseline dropped with the use SYBR Gold but was overcome by the employment of a capillary with longer ineffective length (40 vs. 20 cm). Separation resolution and reproducibility were impacted by the concentration of SYBR Gold and hydroxypropyl methylcellulose. With the use of a short capillary (10 cm effective length and 50 cm total length), fast separations of supercoiled, linear, open circular, and other isoforms were accomplished within 8 min. Appropriate capillary cleaning with 0.1 M sodium hydroxide/0.1 M hydrochloric acid and capillary storage with 0.1 M hydrochloric acid ensured good separation reproducibility of 217 runs during an extended period of use.

2.
Anal Bioanal Chem ; 416(1): 299-311, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37932512

RESUMO

Methylmercury (MeHg+) is a common form of organic mercury that is substantially more toxic than inorganic mercury and is more likely to accumulate in organisms through biological enrichment. Therefore, developing a method to enable the specific and rapid detection of MeHg+ in seafood is important and remains challenging to accomplish. Herein, a rapid, label-free fluorescence detection method for MeHg+ determination was developed based on SYBR Green I. The detection system implemented "add and measure" detection mode can be completed in 10 min. Under optimal assay conditions, the detection platform showed a linear relationship with the concentration of MeHg+ within 1-50 nM (Y = 8.573x + 42.89, R2 = 0.9928), with a detection limit of 0.3218 nM. The results obtained for competitive substances, such as inorganic mercury ions and anions, show a high specificity of the method. In addition, this method successfully detected MeHg+ in seawater and marine products, with an accompanying spike recovery rate of 96.45-105.1%.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Fluorometria , Água do Mar
3.
BMC Vet Res ; 20(1): 33, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291450

RESUMO

BACKGROUND: Enteric viruses are among the most prominent etiological agents of Runting-Stunting Syndrome (RSS). The Avian Nephritis Virus (ANV) is an astrovirus associated with enteric diseases in poultry, whose early diagnosis is essential for maintaining a good poultry breeding environment. ANV is an RNA virus that rapidly mutates, except for some conserved regions such as ORF1b. Therefore, the approach of a diagnostic method based on fast-RT-qPCR using SYBR® Green that focuses on the amplification of a fragment of ORF1b is presented as a feasible alternative for the diagnosis of this viral agent. In this study, the proposed assay showed a standard curve with an efficiency of 103.8% and a LoD and LoQ of 1 gene viral copies. The assay was specific to amplify the ORF 1b gene, and no amplification was shown from other viral genomes or in the negative controls. 200 enteric (feces) samples from chickens (broilers) and laying hens with signs of RSS from Ecuadorian poultry flocks were examined to validate the proposed method. RESULTS: Using our method, 164 positive results were obtained out of the total number of samples run, while the presence of viral RNA was detected in samples collected from one day to 44 weeks old in both avian lines. CONCLUSIONS: Our study presents a novel, rapid, robust, and sensitive molecular assay capable of detecting and quantifying even low copy numbers of the ANV in commercial birds, therefore introducing a handy tool in the early diagnosis of ANV in enteric disease outbreaks in poultry.


Assuntos
Infecções por Astroviridae , Avastrovirus , Doenças das Aves Domésticas , Vírus de RNA , Animais , Feminino , Galinhas , Avastrovirus/genética , Infecções por Astroviridae/diagnóstico , Infecções por Astroviridae/veterinária , RNA Viral/genética , RNA Viral/análise , Aves Domésticas , Vírus de RNA/genética
4.
Cytometry A ; 103(3): 260-268, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35929601

RESUMO

Marine viruses make up an essential compartment of the marine ecosystem. They are the most abundant organisms and represent one of the biggest sources of unknown biodiversity. Viruses also have an important impact on bacterial and algal mortality in the ocean, and as such have a major influence on microbial diversity and biogeochemical cycling. However, little is known about the abundance and distribution patterns of viruses across the oceans and seas. Over the last 20 years, flow cytometry has been the technique of choice to detect and count the viral particles in natural samples. Nevertheless, due to their small size, the detection of marine viruses is still extremely challenging. In this article we describe how a new generation of flow cytometer which uses the side scatter (SSC) of violet photons from a 405 nm laser beam helps to improve the resolution for detecting marine viruses. To the best of our knowledge, this is the first report where virioplankton has been detected in aquatic samples using flow cytometry with a 405 nm violet SSC instead of a 488 nm blue SSC.


Assuntos
Ecossistema , Vírus , Oceanos e Mares
5.
J Fluoresc ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505363

RESUMO

The properties of six commonly used, commercially available, fluorescent dyes were compared in staining right-handed B-DNA and left-handed Z-DNA. All showed different degree of fluorescence turn-on in the presence of B-DNA, but very little in the presence of Z-DNA. The optimal range of dye-DNA ratios of DNA was determined. While these dyes do not provide a turn-on type probe for Z-DNA, staining between B- and Z-DNA using dyes such as SYBR Green I was shown to be useful in tracking the kinetics of conformational changes between these two forms of DNA. Finally, SYBR Green I showed unique circular dichroism patterns in 4 M NaCl that change in the presence of double stranded DNA, both in the visible and UV range.

6.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679445

RESUMO

Glyphosate (GLYP) is a broad-spectrum, nonselective, organic phosphine postemergence herbicide registered for many food and nonfood fields. Herein, we developed a biosensor (Mbs@dsDNA) based on carboxylated modified magnetic beads incubated with NH2-polyA and then hybridized with polyT-glyphosate aptamer and complementary DNA. Afterwards, a quantitative detection method based on qPCR was established. When the glyphosate aptamer on Mbs@dsDNA specifically recognizes glyphosate, complementary DNA is released and then enters the qPCR signal amplification process. The linear range of the method was 0.6 µmol/L−30 mmol/L and the detection limit was set at 0.6 µmol/L. The recoveries in tap water ranged from 103.4 to 104.9% and the relative standard deviations (RSDs) were <1%. The aptamer proposed in this study has good potential for recognizing glyphosate. The detection method combined with qPCR might have good application prospects in detecting and supervising other pesticide residues.


Assuntos
Aptâmeros de Nucleotídeos , DNA , DNA Complementar , DNA/química , Corantes , Aptâmeros de Nucleotídeos/química , Água , Glifosato
7.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511123

RESUMO

Optically active liquid-crystalline dispersions (LCD) of nucleic acids, obtained by polymer- and salt-induced (psi-) condensation, e.g., by mixing of aqueous saline solutions of low molecular weight DNA (≤106 Da) and polyethylene glycol (PEG), possess an outstanding circular dichroism (CD) signal (so-called psi-CD) and are of interest for sensor applications. Typically, such CD signals are observed in PEG content from ≈12.5% to ≈22%. However, in the literature, there are very conflicting data on the existence of psi-CD in DNA LCDs at a higher content of crowding polymer up to 30-40%. In the present work, we demonstrate that, in the range of PEG content in the system above ≈24%, optically polymorphic LCDs can be formed, characterized by both negative and positive psi-CD signals, as well as by ones rather slightly differing from the spectrum of isotropic DNA solution. Such a change in the CD signal is determined by the concentration of the stock solution of PEG used for the preparation of LCDs. We assume that various saturation of polymer chains with water molecules may affect the amount of active water, which in turn leads to a change in the hydration of DNA molecules and their transition from B-form to Z-form.


Assuntos
DNA , Polímeros , Polímeros/química , Conformação de Ácido Nucleico , DNA/química , Polietilenoglicóis/química , Dicroísmo Circular , Água
8.
Virus Genes ; 58(2): 113-121, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34988898

RESUMO

Rapid, sensitive, and reliable laboratory detection of foot-and-mouth disease virus (FMDV) infection is essential for containing and controlling virus infection in any geographical area. In this report a SYBR green-based 3Dpol-specific one-step real-time RT-PCR (rRT-PCR) assay was developed for the pan-serotype detection of FMDV in India. The detection limit of the SYBR green-based rRT-PCR was 10-2 TCID50/50 µl, which is 10 times more sensitive than the traditional agarose gel electrophoresis-based RT-multiplex PCR (RT-mPCR). The standard curve exhibited a linear range across 8-log10 units of viral RNA dilution. The reproducibility and specificity of this assay were reasonably high suggesting that the 3Dpol-specific SYBR green rRT-PCR could detect FMDV genome specifically and with little run-to-run variation. The new 3Dpol-specific SYBR green rRT-PCR assay was evaluated alongside the established RT-mPCR using the archived FMDV isolates and clinical field samples from suspected FMD outbreaks. A perfect concordance was observed between the new rRT-PCR and the traditional RT-mPCR on viral RNA in the archived FMDV cell culture isolates tested. Furthermore, 73% of FMDV-suspected clinical samples were detected positive through the 3Dpol-specific SYBR green rRT-PCR, while the detection rate through the traditional RT-mPCR was 57%. Therefore, the SYBR green-based 3Dpol-specific one-step rRT-PCR could be considered as a valuable assay with higher diagnostic sensitivity to complement the routine assays that are being used for FMD virus diagnosis in India.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Benzotiazóis , Diaminas , Febre Aftosa/diagnóstico , Vírus da Febre Aftosa/genética , Quinolinas , RNA Viral/análise , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade
9.
Anal Bioanal Chem ; 414(9): 3087-3094, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35118572

RESUMO

This paper describes a novel fluorescence label-free aptasensor to detect aflatoxin B1 (AFB1) by utilizing SYBR Gold, aptamer, and single-walled carbon nanohorns (SWCNHs). In the presence of AFB1, the conformation of AFB1-specific aptamer went through and the spatial structure of this specific aptamer was transformed accordingly. Due to the resistance of the transformed aptamer when adsorbed on the surface of SWCNHs, the protection of the fluorescence of SYBR Gold was accomplished. Consequently, concentrations of AFB1 showed a strong association with fluorescence intensity. The detection limit (LOD) of AFB1 was 1.89 ng/mL, while the linear range was 5-200 ng/mL and fluorescence intensity satisfactorily correlated (R2 = 0.9919) with the logarithm of AFB1 concentration.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aflatoxina B1/análise , Aptâmeros de Nucleotídeos/química , Carbono , Ouro/química , Limite de Detecção
10.
J Gastroenterol Hepatol ; 37(12): 2264-2271, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272130

RESUMO

BACKGROUND AND AIM: Diagnosis of abdominal TB is an exigent task due to variable anatomical sites and non-specific clinical manifestations that closely resemble other diseases. Most of the available diagnostic modalities yield low sensitivities and need expertise to handle the specialized equipment. Hence, there is an urgent need to develop a rapid and reliable diagnostic test, so as to reduce the unnecessary morbidity. Therefore, we designed a multi-targeted loop-mediated isothermal amplification (MT-LAMP) for diagnosing abdominal TB. METHODS: We evaluated an MT-LAMP (using mpt64 and IS6110) to diagnose abdominal TB within ascitic fluids and intestinal/peritoneal biopsies and compared these results with multiplex-PCR (M-PCR) using the same targets. MT-LAMP products were analyzed by gel electrophoresis and visual detection methods, that is, hydroxy naphthol blue and SYBR Green I reaction. RESULTS: Sensitivities of 80.9% and 84.6% were obtained in suspected (n = 42) and total abdominal TB (n = 52) cases, respectively by gel-based MT-LAMP, with 97.3% (n = 37) specificity in non-TB controls. Notably, sensitivities attained by gel-based/SYBR Green I MT-LAMP in both clinically suspected and total abdominal TB cases were significantly higher (P < 0.05) than M-PCR. Furthermore, sensitivity obtained with SYBR Green I was equivalent to that of gel-based MT-LAMP, while somewhat lesser specificity (94.6%) was attained with SYBR Green I, compared with gel-based MT-LAMP. CONCLUSION: Both gel-based and SYBR Green MT-LAMP exhibited equivalent sensitivities to diagnose abdominal TB. Because SYBR Green LAMP is easier to perform than a gel-based assay, we are currently focused on improving the specificity of this assay so as to develop a diagnostic kit.


Assuntos
Tuberculose , Humanos , Tuberculose/diagnóstico
11.
Appl Microbiol Biotechnol ; 106(5-6): 2207-2218, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35218386

RESUMO

The pandemic of coronavirus disease 2019 (COVID-19) continues to threaten public health. For developing countries where vaccines are still in shortage, cheaper alternative molecular methods for SARS-CoV-2 identification can be crucial to prevent the next wave. Therefore, 14 primer sets recommended by the World Health Organization (WHO) was evaluated on testing both clinical patient and environmental samples with the gold standard diagnosis method, TaqMan-based RT-qPCR, and a cheaper alternative method, SYBR Green-based RT-qPCR. Using suitable primer sets, such as ORF1ab, 2019_nCoV_N1 and 2019_nCoV_N3, the performance of the SYBR Green approach was comparable or better than the TaqMan approach, even when considering the newly dominating or emerging variants, including Delta, Eta, Kappa, Lambda, Mu, and Omicron. ORF1ab and 2019_nCoV_N3 were the best combination for sensitive and reliable SARS-CoV-2 molecular diagnostics due to their high sensitivity, specificity, and broad accessibility. KEY POINTS: • With suitable primer sets, the SYBR Green method performs better than the TaqMan one. • With suitable primer sets, both methods should still detect the new variants well. • ORF1ab and 2019_nCoV_N3 were the best combination for SARS-CoV-2 detection.


Assuntos
COVID-19 , SARS-CoV-2 , Benzotiazóis , COVID-19/diagnóstico , Diaminas , Humanos , Quinolinas , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , Sensibilidade e Especificidade
12.
Phytopathology ; 112(8): 1776-1782, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35232281

RESUMO

The root-lesion nematode, Pratylenchus scribneri, is a migratory endo-parasitic nematode that impacts potato production on a large scale. Effective management of this nematode requires an understanding of its population dynamics alongside early detection. Typically, the nematode population estimates are made from infested soil; however, considering the endo-migratory lifestyle of this nematode, it also is crucial to determine the nematode population residing inside the host roots. In this study, a SYBR green-based quantitative real-time PCR (qPCR) assay was developed for detection and quantification of P. scribneri in potato roots. The assay used a previously reported primer pair (ITS-2F/ITS-2R), and it proved to be specific and sensitive, detecting as low as 1/128th equivalents of a P. scribneri individual per 0.2 g of potato roots. The robustness of the assay was reflected in high correlation observed between the P. scribneri densities determined microscopically and the densities detected by qPCR in artificially inoculated (R2 = 0.93) and naturally infected (R2 = 0.73) root samples. A time-course experiment conducted in the greenhouse using qPCR detected P. scribneri in potato roots as early as 5 days after planting. The results correlated well with the microscopic observations (R2 = 0.80) and were complemented further with root staining. Additionally, three P. scribneri reproduction peaks were observed during one 3-month growth cycle of potato. Overall, the assay developed in this study is specific to P. scribneri in DNA extracts of root tissue and allows early detection and understandings of reproduction timings of this important nematode of potato.


Assuntos
Solanum tuberosum , Tylenchoidea , Animais , Doenças das Plantas/parasitologia , Reação em Cadeia da Polimerase em Tempo Real , Solanum tuberosum/genética , Coloração e Rotulagem , Tylenchoidea/genética
13.
J Dairy Sci ; 105(9): 7298-7307, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35863920

RESUMO

A colorimetric and surface-enhanced Raman scattering (SERS) signal amplification platform based on 2-step aggregation of gold nanoparticles (AuNP) was constructed for the sensitive detection of melamine. In this study, the positively charged SYBR Green I was used for the first step of aggregation of AuNP, via charge neutralization, to obtain small-sized AuNP aggregates. The positively charged SYBR Green I decreased the negative charges of the surface of AuNP, which was beneficial to the aggregation of AuNP. In addition, the melamine could aggregate AuNP by decreasing the negative charges of the surface of AuNP and self-assemble with each other on the surface of AuNP by hydrogen bonds. Therefore, the second efficient aggregation of small-sized AuNP aggregates could be achieved with melamine at low concentration, resulting in significant signal changes of color and SERS. The sensitivity of a colorimetric (0.60 mg/L) and SERS (0.089 mg/L) platform, based on 2-step aggregation of AuNP, was 15 and 2.2 times higher than that based on 1-step aggregation of AuNP for detecting melamine.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Colorimetria/métodos , Colorimetria/veterinária , Ouro/química , Nanopartículas Metálicas/química , Leite/química , Análise Espectral Raman/métodos , Triazinas
14.
Foodborne Pathog Dis ; 19(2): 126-135, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34726510

RESUMO

Diarrheagenic Escherichia coli (DEC) causes diarrheal symptoms in humans. The comprehensive detection of DEC from feces using SYBR Green real-time PCR assay requires multiple runs. Moreover, PCR screening can have discrepancies related to the conformance between the results from PCR screening and culturing. We aimed to develop a real-time PCR for the comprehensive testing of DEC for diagnostic support that can be used in any general laboratory and proposed its effective utilization. We tested specificity for the designed primer sets using 100 strains. Moreover, screening and isolation of DEC were performed using the proposed multiplex real-time PCR system for 308 fecal samples collected from 37 food poisoning incidences that occurred in Gifu Prefecture, Japan from 2017 to 2019. Furthermore, the factor of discrepant results between PCR screening and culturing was analyzed by quantifying the number of DEC cell and whole E. coli cell using real-time PCR for 47 PCR screening-positive fecal samples. The results obtained from the developed multiplex real-time PCR system were in 99% concordance with those from the conventional techniques. A total of 49 fecal samples were detected with virulence genes for the screening. Of the samples which were positive with virulence genes by PCR screening, 38.3% could not be detected from the strain for bacterial culture. We found that the culturing positive samples were significantly high in numbers for the DEC cells, but no significant difference was noted in the whole E. coli cells with culturing negative samples. The multiplex real-time PCR developed in this study was found to be rapid and practical for DEC testing. The PCR screening for DEC using this method can provide rapid information toward the diagnostic support of DEC infection.


Assuntos
Infecções por Escherichia coli , Doenças Transmitidas por Alimentos , Diarreia/microbiologia , Escherichia coli/genética , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Doenças Transmitidas por Alimentos/diagnóstico , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos
15.
BMC Microbiol ; 21(1): 23, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430782

RESUMO

BACKGROUND: Since its discovery in 2007, the importance of the human gut bacterium Prevotella copri (P. copri) has been widely recognized with its links to diet and health status and potential as next generation probiotic. Therefore, precise, convenient and cost-effective diagnostic tools for the detection and quantification of P. copri from clinical and environmental samples are needed. RESULTS: In this study, a Sybr Green qPCR protocol for P. copri detection and quantification was developed and tested on P. copri-spiked murine faeces samples targeting both the 16S rRNA gene and P. copri genome specific genes. The use of one 16S rRNA primer pair and 2 genome specific primer pairs resulted in at least 10x higher specificity and sensitivity than the primer-only PCR currently cited in the literature, reaching a sensitivity of 103 CFU/mL. Furthermore, we showed that the new 16S rRNA primer set provided the best balance of detection of a wide range of P. copri strains, while avoiding off-target detection of other Prevotella genus species. The quantification of P. copri in human stool samples using the new 16S rRNA primers also correlated well with 16S rRNA high throughput MiSeq sequencing data (r2 = 0.6604, p = 0.0074). The two genome specific primer pairs on the other hand uniquely detect the DSM18205 reference strain, allowing differential detection of indigenous and experimentally administered P. copri populations. Finally, it was shown that SYBR green qPCR mixes have an influence on sensitivity and specificity, with Biorad SsoAdvanced Universal SYBR Green Supermix performing the best under our test conditions of six commercially available SYBR green master mixes. CONCLUSIONS: This improved qPCR-based method will allow accurate P. copri identification and quantification. Moreover, this methodology can also be applied to identify other bacterial species in complex samples.


Assuntos
Fezes/microbiologia , Prevotella/isolamento & purificação , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Adulto , Animais , Benzotiazóis/química , Primers do DNA/genética , DNA Bacteriano/genética , Diaminas/química , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Filogenia , Prevotella/genética , Quinolinas/química , Sensibilidade e Especificidade , Análise de Sequência de DNA , Adulto Jovem
16.
Anal Biochem ; 621: 114157, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33705723

RESUMO

Pathogenic Yersinia (Y.) enterocolitica is the primary causative agent of Yersiniosis, with outbreaks in numerous countries around the world, and causes diarrhea and vomiting in animals and humans. Therefore, an instrument-free and convenient nucleic acid visualization method, RPA-SYBR Green I, was established, which combines recombinase polymerase amplification (RPA) with the fluorescent dye SYBR Green I for the detection of the adhesion gene ail in pathogenic Y. enterocolitica. After optimization of a series of conditions such as primer concentration, the detection of pathogenic Y. enterocolitica could be finally completed within about 20 min (from DNA extraction to observation of results) at an isothermal temperature of 39°C. RPA-SYBR Green I had no cross-reactivity with other bacteria and the detection limit was 101 CFU/µL, with sensitivity equal to that of conventional PCR. The method established in this paper and conventional PCR identified a total of 5 spiked samples and 15 meat samples stored in refrigerated, and it was concluded that there was 100% consistency between the two methods. Overall, RPA-SYBR Green I is a visual and facilitate detection assay that can accurately discover pathogenic Y. enterocolitica.


Assuntos
Benzotiazóis/química , Diaminas/química , Fluorometria/métodos , Microbiologia de Alimentos/métodos , Carne/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Quinolinas/química , Yersinia enterocolitica/genética , Proteínas da Membrana Bacteriana Externa/genética , DNA Bacteriano/análise , DNA Bacteriano/genética , Carne/análise , Recombinases/metabolismo , Reprodutibilidade dos Testes , Temperatura , Yersinia enterocolitica/isolamento & purificação
17.
J Microsc ; 284(2): 118-131, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34231217

RESUMO

Microscopic organisms that penetrate calcareous structures by actively dissolving the carbonate matrix, namely microendoliths, have an important influence on the breakdown of marine carbonates. The study of these microorganisms and the bioerosion traces they produce is crucial for understanding the impact of their bioeroding activity on the carbonate recycling in environments under global climate change. Traditionally, either the extracted microendoliths were studied by conventional microscopy or their traces were investigated using scanning electron microscopy (SEM) of epoxy resin casts. A visualisation of the microendoliths in situ, that is within their complex microbioerosion structures, was previously limited to the laborious and time-consuming double-inclusion cast-embedding technique. Here, we assess the applicability of various fluorescence staining methods in combination with confocal laser scanning microscopy (CLSM) for the study of fungal microendoliths in situ in partly translucent mollusc shells. Among the tested methods, specific staining with dyes against the DNA (nuclei) of the trace making organisms turned out to be a useful and reproducible approach. Bright and clearly delineated fluorescence signals of microendolithic nuclei allow, for instance, a differentiation between abandoned and still populated microborings. Furthermore, infiltrating the microborings with fluorescently stained resin seems to be of great capability for the visualisation and quantification of microbioerosion structures in their original spatial orientation. Potential fields of application are rapid assessments of endolithic bio- and ichnodiversity and the quantification of the impact of microendoliths on the overall calcium carbonate turnover. The method can be applied after CLSM of the stained microendoliths and retains the opportunity for a subsequent investigation of epoxy casts with SEM. This allows a three-fold approach in studying microendoliths in the context of their microborings, thereby fostering the integration of biological and ichnological aspects of microbial bioerosion.


Bioerosion describes the process of active erosion of hard substrates induced by the activity of living organisms. Beside numerous marine macroscopic bioeroding organisms such as sponges, annelids or bivalves, there is an astonishing 'hidden diversity' of microscopic bioeroding organisms which produce minute tunnels and chambers, for example in calcareous shells and skeletons of other marine organisms. These so-called microendoliths belong to bacteria, microalgae, foraminiferans, or fungi. Due to their lifestyle hidden inside the hard substrate, scientific investigation is often laborious and involves complex preparation techniques, electron microscopy, or even nano-computed tomography. Photo-autotrophic microendoliths (eg cyanobacteria and algae) have been studied with fluorescence microscopy using autofluorescence properties, for example of their chloroplasts. However, microendoliths of aphotic depths, mostly of fungal origin, do not show autofluorescence. With the present study we test different fluorescent dyes staining the microbioeroders 'in situ', that is, inside their microscopic tunnels, and visualise them using three-dimensional confocal laser scanning microscopy (CLSM). Very good results have been obtained with the dye Sybr Green I that stains DNA molecules and thereby the cell nuclei of the microendoliths. This method can be used, for instance, to measure the infestation rate of a given substrate by discriminating between abandoned microborings and those still inhabited by microendoliths. Another approach that was successfully tested in the course of the present study was the infiltration of the cleaned microborings with resin that was previously mixed with the fluorescent dye Safranin-O. The datasets obtained with the CLSM were used to reconstruct 3D-surface models of the microborings of three different microendoliths. Such models can be used to analyse the original spatial arrangement inside the hard substrate and to measure exact volumes. The resulting possibility to make exact quantifications is of high value for future investigations that focus on the role and proportion of microbioerosion in the (re)cycling of marine carbonates.


Assuntos
Carbonatos , Fungos , Microscopia Confocal/métodos , Microscopia Eletrônica de Varredura/instrumentação , Microscopia Eletrônica de Varredura/métodos , Coloração e Rotulagem/métodos
18.
Malar J ; 20(1): 166, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766038

RESUMO

BACKGROUND: As an alternative to PCR methods, LAMP is increasingly being used in the field of molecular diagnostics. Under isothermal conditions at 65 °C, the entire procedure takes approximately 30 min to complete. In this study, we establish a sensitive and visualized LAMP method in a closed-tube system for the detection of Plasmodium knowlesi. METHODS: A total of 71 malaria microscopy positive blood samples collected in blood spots were obtained from the Sarawak State Health Department. Using 18s rRNA as the target gene, nested PCR and SYBR green I LAMP assay were performed following the DNA extraction. The colour changes of LAMP end products were observed by naked eyes. RESULTS: LAMP assay demonstrated a detection limit of 10 copies/µL in comparison with 100 copies/µL nested PCR. Of 71 P. knowlesi blood samples collected, LAMP detected 69 microscopy-positive samples. LAMP exhibited higher sensitivity than nested PCR assay. The SYBR green I LAMP assay was 97.1% sensitive (95% CI 90.2-99.7%) and 100% specific (95% CI 83.2-100%). Without opening the cap, incorporation of SYBR green I into the inner cap of the tube enabled the direct visualization of results upon completion of amplification. The positives instantaneously turned green while the negatives remained orange. CONCLUSIONS: These results indicate that SYBR green I LAMP assay is a convenient diagnosis tool for the detection of P. knowlesi in remote settings.


Assuntos
Benzotiazóis/química , Diaminas/química , Malária/diagnóstico , Técnicas de Diagnóstico Molecular/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Plasmodium knowlesi/isolamento & purificação , Quinolinas/química , Humanos , Malásia , RNA de Protozoário/análise , RNA Ribossômico 18S/análise , Sensibilidade e Especificidade
19.
Mol Cell Probes ; 57: 101730, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33848593

RESUMO

Getah virus (GETV), a mosquito-borne virus belonging to the Alphavirus genus of family Togaviridae, has become increasingly problematic, which poses a huge threat to the safety of animals and public health. In order to detect GETV quickly and accurately, we have developed a SYBR Green I real-time quantitative reverse transcription PCR (RT-qPCR) assay for GETV with the detection limit of 66 copies/µL, excellent correlation coefficient (R2) of 0.9975, and amplification efficiency (E) of 98.90%, the target selected was the non-structural protein 3 of GETV. The sensitivity of it was higher than that of ordinary RT-PCR by 1000 folds, and the inter-assay and intra-assay CV values were all less than 0.99%. The newly developed RT-qPCR assay exhibited good sensitivity and reproducibility, which will provide technical support for the reliable and specific rapid diagnosis, and quantitative analysis of GETV infection.


Assuntos
Alphavirus , Culicidae , Alphavirus/genética , Animais , Benzotiazóis , Diaminas , Quinolinas , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Transcrição Reversa , Sensibilidade e Especificidade , Suínos
20.
Mol Cell Probes ; 59: 101762, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34481896

RESUMO

Canine bufavirus (CBuV) was first discovered in puppies in Italy in 2016, and subsequent studies have reported its possible relationship with acute enteritis. Currently, there is no specific and quantitative detection method for CBuV. This study examined the conserved NS1 gene and used a pair of specific primers to establish a direct SYBR Green I-based real-time quantitative polymerase chain reaction (qPCR) method for the detection and quantification of CBuV. In the sensitivity experiment, the detection limit of SYBR Green I-based real-time qPCR was 4.676 × 101 copies/µL and that of conventional PCR (cPCR) was 4.676 × 103 copies/µL. Furthermore, the qPCR method did not detect other viruses in dogs, indicating good specificity. The intra-assay coefficient of variation was 0.07-0.55% and the inter-assay coefficient of variation was 0.03-0.11%, indicating good repeatability. In clinical sample testing, the detection rate of qPCR was 5.0% (6/120), higher than that of cPCR (2.5%, 3/120). In addition, the samples that tested CBuV-positive in this experiment were all from dogs with acute enteritis. In summary, the SYBR Green I-based qPCR method established in this study has good sensitivity, specificity, and reproducibility for clinical sample detection and can also assist in future research on CBuV.


Assuntos
Benzotiazóis , Animais , Diaminas , Cães , Quinolinas , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA