Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 712
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292868

RESUMO

Saffron spice owes its commercial appreciation to its specific apocarotenoids: crocins, picrocrocin, and safranal. In Crocus sativus, these compounds are biosynthesized from zeaxanthin through oxidative cleavage by the carotenoid cleavage dioxygenase 2 (CCD2). Transgenic tomato plants expressing CsCCD2 in the fruit, named Tomaffron, accumulate high levels of saffron apocarotenoids despite the low substrate availability for CsCCD2. In the present study, CsCCD2 has been introduced into Xantomato; this tomato variety accumulates high levels of zeaxanthin and ß-carotene in ripe fruit due to a combination of four mutant alleles. Xantomato and Tomaffron genotypes have been combined to optimize apocarotenoid production. The best transgenic lines accumulated 15 and 14 times more crocins and picrocrocin than Tomaffron, alongside a fourfold increase in ß-carotene compared to Xantomato, albeit at a cost in fruit yield. Segregation of the four mutations has been carried out to find the best combination for obtaining high levels of saffron apocarotenoids without adverse effects on fruit yield. Plants harboring the high-pigmented 3 (hp3) and BETA (BSh) mutations accumulated 6 and 15 times more crocins and picrocrocin than Tomaffron, without observable pleiotropic effects. Additionally, those high levels of saffron apocarotenoids were obtained in fruit accumulating high levels of both lycopene and ß-carotene independently or in combination, suggesting a regulatory role for the apocarotenoids produced and indicating that it is possible to increase the levels of both types of healthy promoting molecules simultaneously.

2.
BMC Plant Biol ; 24(1): 369, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38711012

RESUMO

BACKGROUND: The increasing demand for saffron metabolites in various commercial industries, including medicine, food, cosmetics, and dyeing, is driven by the discovery of their diverse applications. Saffron, derived from Crocus sativus stigmas, is the most expensive spice, and there is a need to explore additional sources to meet global consumption demands. In this study, we focused on yellow-flowering crocuses and examined their tepals to identify saffron-like compounds. RESULTS: Through metabolomic and transcriptomic approaches, our investigation provides valuable insights into the biosynthesis of compounds in yellow-tepal crocuses that are similar to those found in saffron. The results of our study support the potential use of yellow-tepal crocuses as a source of various crocins (crocetin glycosylated derivatives) and flavonoids. CONCLUSIONS: Our findings suggest that yellow-tepal crocuses have the potential to serve as a viable excessive source of some saffron metabolites. The identification of crocins and flavonoids in these crocuses highlights their suitability for meeting the demands of various industries that utilize saffron compounds. Further exploration and utilization of yellow-tepal crocuses could contribute to addressing the growing global demand for saffron-related products.


Assuntos
Carotenoides , Crocus , Flores , Metabolômica , Crocus/genética , Crocus/metabolismo , Carotenoides/metabolismo , Flores/genética , Flores/metabolismo , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Metaboloma
3.
Genome ; 67(2): 43-52, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37922517

RESUMO

Saffron, the stigma of Crocus sativus L., is the most expensive spice used for culinary, medicinal, dye, and cosmetics purposes. It is highly adulterated because of its limited production and high commercial value. In this study, 104 saffron market samples collected from 16 countries were tested using morphology, high-performance liquid chromatography (HPLC), high-performance thin-layer chromatography (HPTLC), and deoxyribonucleic acid (DNA) barcoding. Overall, 45 samples (43%) were adulterated. DNA barcoding identified the highest number of adulterated saffron (44 samples), followed by HPTLC (39 samples), HPLC (38 samples), and morphology (32 samples). Only DNA barcoding identified the adulterated samples containing saffron and other plants' parts as bulking agents. In addition, DNA barcoding identified 20 adulterant plant species, which will help develop quality control methods and market surveillance. Some of the adulterant plants are unsafe for human consumption. The HPLC method helped identify the saffron samples adulterated with synthetic safranal. HPLC and HPTLC methods will help identify the samples adulterated with other parts of the saffron plant (auto-adulteration).


Assuntos
Crocus , Humanos , Crocus/genética , Crocus/química , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Código de Barras de DNA Taxonômico , Contaminação de Medicamentos , Plantas/genética
4.
Microb Cell Fact ; 23(1): 10, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178149

RESUMO

BACKGROUND: Crocin, a glycosylated apocarotenoid pigment predominantly found in saffron, has garnered significant interest in the field of biotechnology for its bioactive properties. Traditional production of crocins and their aglycone, crocetin, typically involves extraction from crocin-producing plants. This study aimed to develop an alternative biosynthetic method for these compounds by engineering the metabolic pathways of zeaxanthin, crocetin, and crocin in Escherichia coli strains. RESULTS: Employing a series of genetic modifications and the strategic overexpression of key enzymes, we successfully established a complete microbial pathway for synthesizing crocetin and four glycosylated derivatives of crocetin, utilizing glycerol as the primary carbon source. The overexpression of zeaxanthin cleavage dioxygenase and a novel variant of crocetin dialdehyde dehydrogenase resulted in a notable yield of crocetin (34.77 ± 1.03 mg/L). Further optimization involved the overexpression of new types of crocetin and crocin-2 glycosyltransferases, facilitating the production of crocin-1 (6.29 ± 0.19 mg/L), crocin-2 (5.29 ± 0.24 mg/L), crocin-3 (1.48 ± 0.10 mg/L), and crocin-4 (2.72 ± 0.13 mg/L). CONCLUSIONS: This investigation introduces a pioneering and integrated microbial synthesis method for generating crocin and its derivatives, employing glycerol as a sustainable carbon feedstock. The substantial yields achieved highlight the commercial potential of microbial-derived crocins as an eco-friendly alternative to plant extraction methods. The development of these microbial processes not only broadens the scope for crocin production but also suggests significant implications for the exploitation of bioengineered compounds in pharmaceutical and food industries.


Assuntos
Escherichia coli , Glicerol , Escherichia coli/genética , Zeaxantinas , Carbono
5.
J Fluoresc ; 34(1): 253-263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37195542

RESUMO

This study employed citric acid as a carbon source and thiourea as a sulphur source to conduct a straightforward one-step microwave synthesis of sulphur-doped carbon quantum dots (SCQDs). For the characterization of as-synthesized SCQDs, several methods such as fluorescence spectroscopy, X-Ray photoelectron spectroscopy (XPS), X-Ray diffraction (XRD), and zeta potential analyzer were utilized. XRD and XPS spectroscopy are used to examine the chemical composition and morphological aspects. These QDs have a limited size distribution spanning up to 5.89 nm, with a maximum distribution at 7 nm, according to zeta size analyser examinations. At an excitation wavelength of 340 nm, the highest fluorescence intensity (FL intensity) of SCQDs was attained. With a detection limit of 0.77 M, the synthesized SCQDs were employed as an efficient fluorescent probe for the detection of Sudan I in saffron samples.

6.
Anal Bioanal Chem ; 416(10): 2553-2564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38459965

RESUMO

Crocin-I, a valuable natural compound found in saffron (Crocus sativus L.), is the most abundant among the various crocin structures. Developing a cost-effective and scalable purification process to produce high-purity crocin-I is of great interest for future investigations into its biological properties and its potential applications in the treatment of neurological disorders. However purifying crocin-I through single-column preparative chromatography (batch) poses a yield-purity trade-off due to structural similarities among crocins, meaning that the choice of the collection window sacrifices either yield in benefit of higher purity or vice versa. This study demonstrates how the continuous countercurrent operating mode resolves this dilemma. Herein, a twin-column MCSGP (multicolumn countercurrent solvent gradient purification) process was employed to purify crocin-I. This study involved an environmentally friendly ethanolic extraction of saffron stigma, followed by an investigation into the stability of the crocin-I within the feed under varying storage conditions to ensure a stable feed composition during the purification. Then, the batch purification process was initially designed, optimized, and subsequently followed by the scale-up to the MCSGP process. To ensure a fair comparison, both processes were evaluated under similar conditions (e.g., similar total column volume). The results showed that, at a purity grade of 99.7%, the MCSGP technique demonstrated significant results, namely + 334% increase in recovery + 307% increase in productivity, and - 92% reduction in solvent consumption. To make the purification process even greener, the only organic solvent employed was ethanol, without the addition of any additive. In conclusion, this study presents the MCSGP as a reliable, simple, and economical technique for purifying crocin-I from saffron extract, demonstrating for the first time that it can be effectively applied as a powerful approach for process intensification in the purification of natural products from complex matrices.


Assuntos
Distribuição Contracorrente , Crocus , Distribuição Contracorrente/métodos , Solventes/química , Carotenoides/química , Etanol/química
7.
Plant Cell Rep ; 43(2): 42, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246927

RESUMO

KEY MESSAGE: Phenylpropanoid biosynthesis and plant-pathogen interaction pathways in saffron and cell wall degrading enzymes in Fusarium oxysporum R1 are key players involved in the interaction. Fusarium oxysporum causes corm rot in saffron (Crocus sativus L.), which is one of the most devastating fungal diseases impacting saffron yield globally. Though the corm rot agent and its symptoms are known widely, little is known about the defense mechanism of saffron in response to Fusarium oxysporum infection at molecular level. Therefore, the current study reports saffron-Fusarium oxysporum R1 (Fox R1) interaction at the molecular level using dual a transcriptomics approach. The results indicated the activation of various defense related pathways such as the mitogen activated protein kinase pathway (MAPK), plant-hormone signaling pathways, plant-pathogen interaction pathway, phenylpropanoid biosynthesis pathway and PR protein synthesis in the host during the interaction. The activation of pathways is involved in the hypersensitive response, production of various secondary metabolites, strengthening of the host cell wall, systemic acquired resistance etc. Concurrently, in the pathogen, 60 genes reported to be linked to pathogenicity and virulence has been identified during the invasion. The expression of genes encoding plant cell wall degrading enzymes, various transcription factors and effector proteins indicated the strong pathogenicity of Fusarium oxysporum R1. Based on the results obtained, the putative molecular mechanism of the saffron-Fox R1 interaction was identified. As saffron is a male sterile plant, and can only be improved by genetic manipulation, this work will serve as a foundation for identifying genes that can be used to create saffron varieties, resistant to Fusarium oxysporum infection.


Assuntos
Crocus , Fusarium , Crocus/genética , Perfilação da Expressão Gênica , Metabolismo Secundário
8.
BMC Womens Health ; 24(1): 143, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408971

RESUMO

BACKGROUND: Sexual satisfaction is a crucial part of a fulfilled life, and the ability to have satisfying sexual function is crucial to one's sexual health. This study investigated the effect of the combined administration of saffron and vitamin E and vitamin E alone on the sexual function of women in their reproductive years. METHODS: A triple-blind randomized controlled trial was conducted with 50 participants experiencing sexual dysfunction without comorbid sleep disorders or severe depression. They were allocated into two groups using a block randomization method (stratified based on the severity of moderate or mild/normal depression). During the 8-week intervention period, participants in the experimental group were administered a 15 mg saffron capsule (safrotin) in the morning and a combination capsule containing 15 mg saffron and 50 mg vitamin E (safradide) in the evening. During the same period, the control group consumed one saffron placebo capsule in the morning and one capsule containing 50 mg of vitamin E and saffron placebo in the evening (in identical appearance to safradide). The Female Sexual Function Index was used to assess sexual function, and the Depression, Anxiety, and Stress Scale-21 (DASS-21) was used to measure levels of depression, anxiety, and stress. These measures were administered at baseline as well as four and eight weeks post-intervention, with an additional measurement taken four weeks after the intervention ceased. The repeated measures ANOVA, ANCOVA, and Mann-Whitney U tests were used to compare the groups. RESULTS: Following the intervention, the experimental group (saffron and vitamin E) demonstrated a statistically significant increase in the overall mean score of sexual function compared to the control group (placebo of saffron and vitamin E) (adjusted mean difference (AMD): 4.6; 95%CI: 3.1 to 6.1; p < 0.001). The mean scores for sexual function dimensions, namely libido, arousal, orgasm, and satisfaction, except for pain, were consistently higher than those of the control group across all time points (p < 0.001). Additionally, the mean score for lubrication was significantly higher only at the eighth-week measurement (p = 0.004). The mean depression score in the experimental group was significantly lower than in the control group at all-time points, i.e., four (p = 0.011) and eight weeks after the intervention (p = 0.005), and four weeks after the end of the intervention (p = 0.007). The experimental group exhibited a statistically significant decrease in mean anxiety score compared to the control group at four weeks into the intervention (p = 0.016) and four weeks following the end of the intervention (p = 0.002). At eight weeks post-intervention, however, there was no significant difference between the groups (p = 0.177). Additionally, the experimental group exhibited a significant reduction in the overall mean stress score compared to the control group after the intervention (AMD: -2.3; 95%CI: -3.1 to -1.5; p < 0.001). CONCLUSION: Using the combination of saffron and vitamin E is more effective in improving sexual function and its domains compared to vitamin E alone in women of reproductive age with sexual dysfunction without severe depression. Also, it diminishes the degree of depression, anxiety, and stress more compared to vitamin E alone. However, further research is required to arrive at a more definitive conclusion. TRIAL REGISTRATION: Iranian Registry of Clinical Trials (IRCT): IRCT20100414003706N36. Date of registration: 17/05/2020; URL: https://en.irct.ir/trial/45992 ; Date of first registration: 21/05/2020.


Assuntos
Crocus , Disfunções Sexuais Fisiológicas , Humanos , Feminino , Vitamina E/uso terapêutico , Irã (Geográfico) , Ansiedade/tratamento farmacológico , Disfunções Sexuais Fisiológicas/tratamento farmacológico
9.
Phytother Res ; 38(5): 2276-2302, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424688

RESUMO

Saffron (Crocus sativus), as an herbal medicine, has been extensively investigated for treating neurological and psychiatric disorders. This systematic review aimed to assess the overall effects of saffron on cognition, depression, anxiety, sleep disorders, attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD). Relevant randomized controlled trials (RCTs) were identified by searching PubMed/Medline, Web of Science, and Clinical Trials databases up to June 2023 according to search terms and inclusion criteria. The participants were either healthy or suffering from some diseases, including neurological and psychiatric disorders, and consumed saffron or its extracts as an intervention. The risk of bias was assessed according to the Cochrane guidelines, and the PRISMA statement was followed. The meta-analysis was performed using RevMan and STATA software. A random-effects or fixed-effects model was used to calculate the pooled effect sizes. Forty-six RCTs were enrolled, and the duration of these trials ranged from 4 to 48 weeks with saffron or its extracts, both alone or in combination with conventional drugs. Saffron was more effective than placebo in improving cognition, depression with an overall effect size of -4.26 (95% CI: -5.76, -2.77), anxiety of -3.75 (95% CI: -5.83, -1.67), and sleep disorders of -1.91 (95% CI: -2.88, -0.93). Saffron was non-inferior to conventional drugs for treating cognitive disorders, depression, anxiety, ADHD, and OCD, and it exhibited good tolerance with few side effects. Saffron may exert protective roles for neurological and psychiatric disorders and represents a relatively favorable and safe treatment.


Assuntos
Crocus , Extratos Vegetais , Crocus/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Transtornos do Sono-Vigília/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Fitoterapia , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtornos Mentais/tratamento farmacológico , Depressão/tratamento farmacológico , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Ansiedade/tratamento farmacológico
10.
Drug Chem Toxicol ; 47(1): 131-142, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649374

RESUMO

Saffron is a well-known expensive spice, which has many pharmacological properties against a variety of ailments. Saffron stigma and leaf contain apocarotenoids and bioactive phytochemicals having therapeutic potential against human disorders. Polycyclic aromatic hydrocarbons (PAHs) are one of the most common toxins in today's aquatic environment. Benzo[a]pyrene (B[a]P), a high molecular weight PAHs prototype, and reported as a potent neurotoxicant, which is profoundly contaminating the environment. The present study investigated the therapeutic efficacy of Saffron stigma extracts and crocin, on B[a]P-induced behavioral changes, altered antioxidant activities, and neurodegeneration in zebrafish. The behavioral responses monitored through the light-dark preference test and novel tank diving test suggested that B[a]P treated zebrafish group showed alteration in anxiolytic-like behavior. Animals exhibited their native behavior when treated alone with Saffron Stigma Extract (SSE) and crocin, an apocarotenoid which also reduced the altered behavior induced by B[a]P. The SSE and crocin stimulated the antioxidant activities with an accumulation of reduced glutathione and catalase enzymes, indicating a protective role against B[a]P-induced oxidative stress and behavioral deficits. The histopathological studies showed the percentage change of pyknotic cell counts in the Periventricular Gray Zone region of the Optic Tectum was 1.74 folds high in B[a]P treated animals as compared to control. Furthermore, the treatment of SSE and crocin reduced the pyknosis process induced by B[a]P-mediated neurodegeneration, possibly due to a better protective mechanism. Future studies may reveal the detailed mechanisms of action of potent SSE and crocin like bioactive compounds having neuroprotective potentials against neurodegenerative diseases.


Assuntos
Antioxidantes , Carotenoides , Crocus , Humanos , Animais , Antioxidantes/farmacologia , Peixe-Zebra , Crocus/química , Benzo(a)pireno/toxicidade , Extratos Vegetais/farmacologia , Extratos Vegetais/química
11.
Plant Dis ; 108(3): 684-693, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37775924

RESUMO

In 2021, two gram-negative bacterial strains were isolated from garlic (Allium sativum) bulbs showing decay and soft rot symptoms in Central Iran. The bacterial strains were aggressively pathogenic on cactus, garlic, gladiolus, onion, potato, and saffron plants and induced soft rot symptoms on carrot, cucumber, potato, and radish discs. Furthermore, they were pathogenic on sporophores of cultivated and wild mushrooms. Phylogenetic analyses revealed that the bacterial strains belong to Burkholderia gladioli. Garlic bulb rot caused by B. gladioli has rarely been reported in the literature. Historically, B. gladioli strains had been assigned to four pathovars, namely, B. gladioli pv. alliicola, B. gladioli pv. gladioli, B. gladioli pv. agaricicola, and B. gladioli pv. cocovenenans, infecting onion, Gladiolus sp., and mushrooms and poisoning foods, respectively. Multilocus (i.e., 16S rRNA, atpD, gyrB, and lepA genes) sequence-based phylogenetic investigations including reference strains of B. gladioli pathovars showed that the two garlic strains belong to phylogenomic clade 2 of the species, which includes the pathotype strain of B. gladioli pv. alliicola. Although the garlic strains were phylogenetically closely related to the B. gladioli pv. alliicola reference strains, they possessed pathogenicity characteristics that overlapped with three of the four historical pathovars, including the ability to rot onion (pv. alliicola), gladiolus (pv. gladioli), and mushrooms (pv. agaricicola). Furthermore, the pathotype of each pathovar could infect the hosts of other pathovars, undermining the utility of the pathovar concept in this species. Overall, using phenotypic pathovar-oriented assays to classify B. gladioli strains should be replaced by phylogenetic or phylogenomic analysis.


Assuntos
Burkholderia gladioli , Alho , Burkholderia gladioli/genética , Alho/genética , Filogenia , RNA Ribossômico 16S/genética , Cebolas
12.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257369

RESUMO

Corneal diseases are a major cause of vision loss, often associated with aging, trauma and disease. Damage to corneal sensory innervation leads to discomfort and pain. Environmental stressors, such as short-wavelength light, can induce oxidative stress that alters mitochondrial function and affects cell and tissue homeostasis, including corneal innervation. Cellular antioxidant mechanisms may attenuate oxidative stress. This study investigates crocin, a derivative of saffron, as a potential antioxidant therapy. In vitro rat trigeminal sensory ganglion neurons were exposed to both sodium azide and blue light overexposure as a model of oxidative damage. Crocin was used as a neuroprotective agent. Mitochondrial and cytoskeletal markers were studied by immunofluorescence analysis to determine oxidative damage and neuroprotection. In vivo corneal innervation degeneration was evaluated in cornea whole mount preparations using Sholl analyses. Blue light exposure induces oxidative stress that affects trigeminal neuron mitochondria and alters sensory axon dynamics in vitro, and it also affects corneal sensory innervation in an in vivo model. Our results show that crocin was effective in preserving mitochondrial function and protecting corneal sensory neurons from oxidative stress. Crocin appears to be a promising candidate for the neuroprotection of corneal innervation.


Assuntos
Antioxidantes , Carotenoides , Células Receptoras Sensoriais , Animais , Ratos , Antioxidantes/farmacologia , Estresse Oxidativo , Córnea
13.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999032

RESUMO

Most research on saffron has focused on its composition and beneficial effects, while the culinary perspective to enhance its gastronomic potential remains unexplored. This study aims to define the transfer of the main compounds responsible for color, flavor, and aromatic properties, evaluating three critical variables: temperature (60 °C, 80 °C and 100 °C), infusion time (ranging from 10 to 30 min), and the composition of the medium (water, oil, and water/oil). Samples were analyzed using the LC-QTOF MS/MS and ISO 3632-1:2011 methods. The major compounds were crocins, including trans-crocin and picrocrocin. Among the flavonoids, kaempferol 3-O-sophoroside stands out. Regarding extraction conditions, crocins, glycoside flavonoids, and picrocrocin were enhanced in water, the former in 100% water and at low temperatures, while picrocrocin proved to be the most stable compound with extraction favored at high temperatures. The variable with the greatest incidence of picrocrocin isolation seemed to be the concentration of water since water/oil compositions reported higher concentrations. Safranal and kaempferol were enriched in the oil phase and at lower temperatures. This study provides a chemical interpretation for the appropriate gastronomic use of saffron according to its versatility. Finally, the determination of safranal using the ISO method did not correlate with that obtained using chromatography.


Assuntos
Carotenoides , Crocus , Extratos Vegetais , Temperatura , Água , Crocus/química , Água/química , Carotenoides/análise , Carotenoides/química , Extratos Vegetais/química , Glucosídeos/análise , Glucosídeos/química , Espectrometria de Massas em Tandem/métodos , Terpenos/análise , Terpenos/química , Flavonoides/análise , Flavonoides/química , Cicloexenos/análise , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise , Quempferóis/análise , Quempferóis/química , Cromatografia Líquida/métodos
14.
Molecules ; 29(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39274831

RESUMO

A predictive model utilizing near-infrared spectroscopy was developed to estimate the loss on drying, total contents of crocin I and crocin II, and picrocrocin content of saffron. Initially, the LD values were determined using a moisture-ash analyzer, while HPLC was employed for measuring the total contents of crocin I, crocin II, and picrocrocin. The near-infrared spectra of 928 saffron samples were collected and preprocessed using first derivative, standard normal variable transformation, detrended correction, multivariate scattering correction, Savitzky-Golay smoothing, and mean centering methods. Leveraging the partial least squares method, regression models were constructed, with parameters optimized through a selective combination of the above six preprocessing methods. Subsequently, prediction models for loss on drying, total contents of crocin I and crocin II, and picrocrocin content were established, and the prediction accuracy of the models was verified. The correlation coefficients and root mean square error of loss on drying, total contents of crocin I and crocin II, and picrocrocin content demonstrated high accuracy, with R2 values of 0.8627, 0.8851, and 0.8592 and root mean square error values of 0.0260, 0.0682, and 0.0465. This near-infrared prediction model established in the present study offers a precise and efficient means of assessing loss on drying, total contents of crocin I and crocin II, and picrocrocin content in saffron and is useful for the development of a rapid quality evaluation system.


Assuntos
Carotenoides , Crocus , Espectroscopia de Luz Próxima ao Infravermelho , Crocus/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Carotenoides/análise , Análise dos Mínimos Quadrados , Cromatografia Líquida de Alta Pressão/métodos , Glucosídeos , Terpenos , Cicloexenos
15.
Molecules ; 29(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38893476

RESUMO

Saffron (Crocus sativus) floral by-products are a source of phenolic compounds that can be recovered and used in the nutraceutical, pharmaceutical, or cosmetic industries. This study aimed to evaluate the phenolic compounds' extraction using green extraction techniques (GETs) in saffron floral by-products and to explore the influence of selected extraction techniques on the phytochemical composition of the extracts. Specifically, ultrasound-assisted extraction (UAE), subcritical water extraction (SWE), and deep eutectic solvents extraction (DESE) were used. Phenolic compounds were identified with (HR) LC-ESI-QTOF MS/MS analysis, and the quantitative analysis was performed with HPLC-PDA. Concerning the extraction techniques, UAE showed the highest amount for both anthocyanins and flavonoids with 50:50% v/v ethanol/water as solvent (93.43 ± 4.67 mg/g of dry plant, dp). Among SWE, extraction with 96% ethanol and t = 125 °C gave the best quantitative results. The 16 different solvent mixtures used for the DESE showed the highest amount of flavonoids (110.95 ± 5.55-73.25 ± 3.66 mg/g dp), while anthocyanins were better extracted with choline chloride:butane-1,4-diol (16.0 ± 0.80 mg/g dp). Consequently, GETs can be employed to extract the bioactive compounds from saffron floral by-products, implementing recycling and reduction of waste and fitting into the broader circular economy discussion.


Assuntos
Crocus , Flores , Fenóis , Extratos Vegetais , Água , Crocus/química , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/análise , Extratos Vegetais/química , Água/química , Flores/química , Solventes Eutéticos Profundos/química , Solventes/química , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/isolamento & purificação , Flavonoides/química , Flavonoides/análise , Antocianinas/isolamento & purificação , Antocianinas/química , Antocianinas/análise , Espectrometria de Massas em Tandem , Ondas Ultrassônicas
16.
J Sci Food Agric ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287449

RESUMO

BACKGROUND: Saffron petals are usually considered as waste after saffron harvest. However, saffron petals contain many important phytochemical components (e.g. quercetin and kaempferol), which may alleviate oxidative damage in human cells. RESULTS: The contents of flavonoids and crocin in different parts of saffron were analyzed. The protective effects of flavonoids from saffron on oxidative damage of B16 cells were investigated. Saffron stigma contained high contents of crocin and picrocrocin, whereas flavonoid content (quercetin, 4.03 ± 0.33 mg g-1 DW; kaempferol, 47.80 ± 0.60 mg g-1 DW) was higher in saffron petals than in other parts. Incubation of B16 cells with quercetin (10-30 µmol L-1) and kaempferol (20-30 µmol L-1) obtained from saffron extracts could significantly increase the total antioxidant capacity (T-AOC) and the activity of NADPH:dehydrogenase quinone-1 (NQO1) to alleviate H2O2-induced oxidative damage. Quercetin was better than kaempferol in increasing NQO1 activity and T-AOC. Quercetin extracted from saffron petals could induce NQO1 expression through regulating kelch-like ECH-associated protein-1/nuclear factor erythroid 2-related factor-2 signaling pathway to protect B16 cells from oxidative damage. CONCLUSION: The content of kaempferol-3-O-sophoroside and quercetin-3-O-sophoroside was higher in saffron petals than in other parts of saffron. The kaempferol and quercetin obtained from saffron petals could enhance the activity of antioxidant enzyme NQO1 and T-AOC in B16 cells. This indicated that saffron petals, as a potential functional food, may prevent diseases caused by oxidative stress. © 2024 Society of Chemical Industry.

17.
J Sci Food Agric ; 104(3): 1391-1398, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37801402

RESUMO

BACKGROUND: Saffron has gained people's attention and love for its unique flavor and valuable edible value, but the problem of saffron adulteration in the market is serious. It is urgent for us to find a simple and rapid identification and quantitative estimation of adulteration in saffron. Therefore, excitation-emission matrix (EEM) fluorescence combined with multi-way chemometrics was proposed for the detection and quantification of adulteration in saffron. RESULTS: The fluorescence composition analysis of saffron and saffron adulterants (safflower, marigold and madder) were accomplished by alternating trilinear decomposition (ATLD) algorithm. ATLD and two-dimensional principal component analysis combined with k-nearest neighbor (ATLD-kNN and 2DPCA-kNN) and ATLD combined with data-driven soft independent modeling of class analogies (ATLD-DD-SIMCA) were applied to rapid detection of adulteration in saffron. 2DPCA-kNN and ATLD-DD-SIMCA methods were adopted for the classification of chemical EEM data, first with 100% correct classification rate. The content of adulteration of adulterated saffron was predicted by the N-way partial least squares regression (N-PLS) algorithm. In addition, new samples were correctly classified and the adulteration level in adulterated saffron was estimated semi-quantitatively, which verifies the reliability of these models. CONCLUSION: ATLD-DD-SIMCA and 2DPCA-kNN are recommended methods for the classification of pure saffron and adulterated saffron. The N-PLS algorithm shows potential in prediction of adulteration levels. These methods are expected to solve more complex problems in food authenticity. © 2023 Society of Chemical Industry.


Assuntos
Crocus , Humanos , Crocus/química , Reprodutibilidade dos Testes , Quimiometria , Contaminação de Alimentos/análise , Alimentos , Análise dos Mínimos Quadrados
18.
J Sci Food Agric ; 104(12): 7580-7591, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38775283

RESUMO

BACKGROUND: Quality properties of 14 saffron samples from Iran, Spain, and Türkiye were compared. RESULTS: Significant differences were observed between anthocyanins, volatile compounds, fatty acids, total phenolic content, and antioxidant activity of saffron samples (P < 0.05). Besides, significant differences in color parameters were observed. Moreover, a total of 13 volatile compounds were identified in the saffron samples using. headspace-solid-phase microextraction-gas chromatography-mass spectrometry, safranal and α-isophorone being the two predominant aroma compounds. Regarding fatty acids, significant differences were seen in the fatty acid profiles of saffron samples (P < 0.05), while linoleic acid was the most concentrated fatty acid. In terms of sensory properties, different concentrations of safranal, α-isophorone and 4-ketoisophorone may lead to significant differences in the odor and taste attributes of saffron samples (P < 0.05). CONCLUSION: Changes in corm origin along with climate and agricultural conditions may affect the quality characteristics of saffron cultivated in different geographical areas to a significant degree. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Crocus , Suplementos Nutricionais , Odorantes , Paladar , Compostos Orgânicos Voláteis , Crocus/química , Irã (Geográfico) , Humanos , Espanha , Odorantes/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Suplementos Nutricionais/análise , Turquia , Cromatografia Gasosa-Espectrometria de Massas , Antioxidantes/análise , Ácidos Graxos/análise , Ácidos Graxos/química , Extratos Vegetais/química , Fenóis/análise , Antocianinas/análise
19.
Yale J Biol Med ; 97(3): 365-381, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39351321

RESUMO

Depression is a significant mental health challenge globally. While traditional antidepressants are effective, they often have unwanted side effects. Saffron, a natural spice derived from Crocus sativus L., has emerged as a potential alternative therapy for depression. Researchers have found that its components such as crocin, crocetin, and safranal have been found to mitigate depressive symptoms through neurotransmitter regulation, anti-inflammatory effects, and neuroprotection. Clinical trials suggest that the effectiveness of saffron in treating mild to moderate depression is comparable to that of standard medications, and animal studies support these results, showing behavioral improvements with saffron treatment. Saffron is particularly appealing due to its safety and lower incidence of side effects, making it suitable for those sensitive to conventional drugs. Additionally, its antioxidant properties may offer further health benefits. However, challenges such as determining the appropriate dosage, prohibitive cost, and the limited availability of quality saffron need to be addressed. Most research on saffron's efficacy is short-term; thus, long-term studies are essential to understand its full therapeutic potential and ongoing antidepressant effects. While saffron is safe in terms of its culinary value, higher therapeutic doses require careful monitoring for drug interactions and side effects. In summary, saffron represents a promising direction in depression treatment, with benefits potentially matching those of standard treatments and a better safety profile. However, further research is necessary to establish clear guidelines for its use, optimize dosing, and assess long-term outcomes. Saffron offers a natural treatment path for depression, but its use must be controlled and supported by scientific evidence.


Assuntos
Antidepressivos , Crocus , Depressão , Crocus/química , Humanos , Depressão/tratamento farmacológico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
20.
Physiol Mol Biol Plants ; 30(5): 749-755, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38846460

RESUMO

Several limitations in genetic engineering interventions in saffron exist, hindering the development of genetically modified varieties and the widespread application of genetic engineering in this crop. Lack of genome sequence information, the complexity of genetic makeup, and lack of well-established genetic transformation protocols limit its in planta functional validation of genes that would eventually lead toward crop optimization. In this study, we demonstrate agro infiltration in leaves of adult plants and whole corm before sprouting are suitable for transient gene silencing in saffron using Tobacco Rattle Virus (TRV) based virus-induced gene silencing (VIGS) targeting phytoene desaturase (PDS). Silencing of PDS resulted in bleached phenotype in leaves in both methods. TRV-mediated VIGS could be attained in saffron leaves and corms, providing an opportunity for functional genomics studies in this expensive spice crop. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01459-0.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA