Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 300(5): 107254, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569934

RESUMO

Nesprins comprise a family of multi-isomeric scaffolding proteins, forming the linker of nucleoskeleton-and-cytoskeleton complex with lamin A/C, emerin and SUN1/2 at the nuclear envelope. Mutations in nesprin-1/-2 are associated with Emery-Dreifuss muscular dystrophy (EDMD) with conduction defects and dilated cardiomyopathy (DCM). We have previously observed sarcomeric staining of nesprin-1/-2 in cardiac and skeletal muscle, but nesprin function in this compartment remains unknown. In this study, we show that specific nesprin-2 isoforms are highly expressed in cardiac muscle and localize to the Z-disc and I band of the sarcomere. Expression of GFP-tagged nesprin-2 giant spectrin repeats 52 to 53, localized to the sarcomere of neonatal rat cardiomyocytes. Yeast two-hybrid screening of a cardiac muscle cDNA library identified telethonin and four-and-half LIM domain (FHL)-2 as potential nesprin-2 binding partners. GST pull-down and immunoprecipitation confirmed the individual interactions between nesprin-2/telethonin and nesprin-2/FHL-2, and showed that nesprin-2 and telethonin binding was dependent on telethonin phosphorylation status. Importantly, the interactions between these binding partners were impaired by mutations in nesprin-2, telethonin, and FHL-2 identified in EDMD with DCM and hypertrophic cardiomyopathy patients. These data suggest that nesprin-2 is a novel sarcomeric scaffold protein that may potentially participate in the maintenance and/or regulation of sarcomeric organization and function.


Assuntos
Conectina , Proteínas com Domínio LIM , Proteínas Musculares , Miócitos Cardíacos , Proteínas do Tecido Nervoso , Proteínas Nucleares , Sarcômeros , Animais , Humanos , Camundongos , Ratos , Conectina/metabolismo , Conectina/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Homeodomínio LIM , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Sarcômeros/metabolismo , Fatores de Transcrição
2.
Biomaterials ; 302: 122363, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37898021

RESUMO

Despite numerous efforts to generate mature human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), cells often remain immature, electrically isolated, and may not reflect adult biology. Conductive polymers are attractive candidates to facilitate electrical communication between hPSC-CMs, especially at sub-confluent cell densities or diseased cells lacking cell-cell junctions. Here we electrospun conductive polymers to create a conductive fiber mesh and assess if electrical signal propagation is improved in hPSC-CMs seeded on the mesh network. Matrix characterization indicated fiber structure remained stable over weeks in buffer, scaffold stiffness remained near in vivo cardiac stiffness, and electrical conductivity scaled with conductive polymer concentration. Cells remained adherent and viable on the scaffolds for at least 5 days. Transcriptomic profiling of hPSC-CMs cultured on conductive substrates for 3 days showed upregulation of cardiac and muscle-related genes versus non-conductive fibers. Structural proteins were more organized and calcium handling was improved on conductive substrates, even at sub-confluent cell densities; prolonged culture on conductive scaffolds improved membrane depolarization compared to non-conductive substrates. Taken together, these data suggest that blended, conductive scaffolds are stable, supportive of electrical coupling in hPSC-CMs, and promote maturation, which may improve our ability to model cardiac diseases and develop targeted therapies.


Assuntos
Miócitos Cardíacos , Células-Tronco Pluripotentes , Humanos , Polímeros/metabolismo , Linhagem Celular , Diferenciação Celular , Condutividade Elétrica
3.
Curr Protoc ; 2(7): e462, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35789134

RESUMO

Sarcomeres are the structural units of the contractile apparatus in cardiac and skeletal muscle cells. Changes in sarcomere characteristics are indicative of changes in the sarcomeric proteins and function during development and disease. Assessment of sarcomere length, alignment, and organization provides insight into disease and drug responses in striated muscle cells and models, ranging from cardiomyocytes and skeletal muscle cells derived from human pluripotent stem cells to adult muscle cells isolated from animals or humans. However, quantification of sarcomere length is typically time consuming and prone to user-specific selection bias. Automated analysis pipelines exist but these often require either specialized software or programming experience. In addition, these pipelines are often designed for only one type of cell model in vitro. Here, we present an easy-to-implement protocol and software tool for automated sarcomere length and organization quantification in a variety of striated muscle in vitro models: Two dimensional (2D) cardiomyocytes, three dimensional (3D) cardiac microtissues, isolated adult cardiomyocytes, and 3D tissue engineered skeletal muscles. Based on an existing mathematical algorithm, this image analysis software (SotaTool) automatically detects the direction in which the sarcomere organization is highest over the entire image and outputs the length and organization of sarcomeres. We also analyzed videos of live cells during contraction, thereby allowing measurement of contraction parameters like fractional shortening, contraction time, relaxation time, and beating frequency. In this protocol, we give a step-by-step guide on how to prepare, image, and automatically quantify sarcomere and contraction characteristics in different types of in vitro models and we provide basic validation and discussion of the limitations of the software tool. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Staining and analyzing static hiPSC-CMs with SotaTool Alternate Protocol: Sample preparation, acquisition, and quantification of fractional shortening in live reporter hiPSC lines Support Protocol 1: Finding the image resolution Support Protocol 2: Advanced analysis settings Support Protocol 3: Finding sarcomere length in non-aligned cells.


Assuntos
Sarcômeros , Software , Animais , Técnicas de Cultura de Células , Músculo Esquelético , Miócitos Cardíacos , Sarcômeros/fisiologia
4.
Cell Rep ; 41(8): 111702, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417853

RESUMO

Disorganization of the basic contractile unit of muscle cells, i.e., the sarcomeres, leads to suboptimal force generation and is a hallmark of muscle atrophy. Here, we demonstrate that the nuclear role of SENP7 deSUMOylase is pivotal for sarcomere organization. SENP7 expression is temporally upregulated in mature muscle cells and directly regulates transcription of the myosin heavy chain (MyHC-IId) gene. We identify SENP7-dependent deSUMOylation of flightless-1 (Fli-I) as a signal for Fli-I association with scaffold attachment factor b1 (Safb1). SENP7 deficiency leads to higher Fli-I SUMOylation and lower chromatin residency of Safb1, thus generating transcriptionally incompetent chromatin conformation on MyHC-IId. Consequently, lower expression of MyHC-IId causes sarcomere disorganization and disrupted muscle cell contraction. Remarkably, cachexia signaling impedes the SENP7-governed transcriptional program, leading to muscle atrophy, with profound loss of motor protein MyHC-IId. We propose a SENP7-driven distinct transcription program as paramount for muscle cell function, which was found targeted in cachexia.


Assuntos
Caquexia , Sarcômeros , Humanos , Sarcômeros/metabolismo , Caquexia/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/complicações , Cadeias Pesadas de Miosina/metabolismo , Cromatina , Endopeptidases/metabolismo
5.
Protein Sci ; 30(11): 2221-2232, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34515376

RESUMO

Proper muscle development and function depend on myosin being properly folded and integrated into the thick filament structure. For this to occur the myosin chaperone UNC-45, or UNC-45B, must be present and able to chaperone myosin. Here we use a combination of in vivo C. elegans experiments and in vitro biophysical experiments to analyze the effects of six missense mutations in conserved regions of UNC-45/UNC-45B. We found that the phenotype of paralysis and disorganized thick filaments in 5/6 of the mutant nematode strains can likely be attributed to both reduced steady state UNC-45 protein levels and reduced chaperone activity. Interestingly, the biophysical assays performed on purified proteins show that all of the mutations result in reduced myosin chaperone activity but not overall protein stability. This suggests that these mutations only cause protein instability in the in vivo setting and that these conserved regions may be involved in UNC-45 protein stability/regulation via posttranslational modifications, protein-protein interactions, or some other unknown mechanism.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Chaperonas Moleculares/genética , Estabilidade Proteica
6.
J Cachexia Sarcopenia Muscle ; 12(1): 159-176, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33305533

RESUMO

BACKGROUND: Chemotherapy is the first line of treatment for cancer patients. However, the side effects cause severe muscle atrophy or chemotherapy-induced cachexia. Previously, the NF-κB/MuRF1-dependent pathway was shown to induce chemotherapy-induced cachexia. We hypothesized that acute collateral toxic effects of chemotherapy on muscles might involve other unknown pathways promoting chemotherapy-induced muscle atrophy. In this study, we investigated differential effects of chemotherapeutic drugs and probed whether alternative molecular mechanisms lead to cachexia. METHODS: We employed mouse satellite stem cell-derived primary muscle cells and mouse C2C12 progenitor cell-derived differentiated myotubes as model systems to test the effect of drugs. The widely used chemotherapeutic drugs, such as daunorubicin (Daun), etoposide (Etop), and cytarabine (Ara-C), were tested. Molecular mechanisms by which drug affects the muscle cell organization at epigenetic, transcriptional, and protein levels were measured by employing chromatin immunoprecipitations, endogenous gene expression profiling, co-immunoprecipitation, complementation assays, and confocal microscopy. Myotube function was examined using the electrical stimulation of myotubes to monitor contractile ability (excitation-contraction coupling) post drug treatment. RESULTS: Here, we demonstrate that chemotherapeutic drugs disrupt sarcomere organization and thereby the contractile ability of skeletal muscle cells. The sarcomere disorganization results from severe loss of molecular motor protein MyHC-II upon drug treatment. We identified that drugs impede chromatin targeting of SETD7 histone methyltransferase and disrupt association and synergetic function of SETD7 with p300 histone acetyltransferase. The compromised transcriptional activity of histone methyltransferase and acetyltransferase causes reduced histone acetylation and low occupancy of active RNA polymerase II on MyHC-II, promoting drastic down-regulation of MyHC-II expression (~3.6-fold and ~4.5-fold reduction of MyHC-IId mRNA levels in Daun and Etop treatment, respectively. P < 0.0001). For MyHC-IIa, gene expression was down-regulated by ~2.6-fold and ~4.5-fold in Daun and Etop treatment, respectively (P < 0.0001). Very interestingly, the drugs destabilize SUMO deconjugase SENP3. Reduction in SENP3 protein level leads to deregulation of SETD7-p300 function. Importantly, we identified that SUMO deconjugation independent role of SENP3 regulates SETD7-p300 functional axis. CONCLUSIONS: The results show that the drugs critically alter SENP3-dependent synergistic action of histone-modifying enzymes in muscle cells. Collectively, we defined a unique epigenetic mechanism targeted by distinct chemotherapeutic drugs, triggering chemotherapy-induced cachexia.


Assuntos
Caquexia , Animais , Caquexia/induzido quimicamente , Caquexia/patologia , Diferenciação Celular , Histona-Lisina N-Metiltransferase/metabolismo , Histonas , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/genética , Atrofia Muscular/patologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-31669374

RESUMO

Muscle-specific RING-finger proteins (MuRFs) are E3 ubiquitin ligases that play important roles in protein quality control in skeletal and cardiac muscles. Here we characterized murf gene expression and protein localization in zebrafish embryos. We found that the zebrafish genome contains six murf genes, including murf1a, murf1b, murf2a, murf2b, murf3 and a murf2-like gene that are specifically expressed in skeletal and cardiac muscles of zebrafish embryos. To analyze the subcellular localization, we generated transgenic zebrafish models expressing MurF1a-GFP or MuRF2a-GFP fusion proteins. MuRF1a-GFP and MuRF2a-GFP showed distinct patterns of subcellular localization. MuRF1a-GFP displayed a striated pattern of localization in myofibers, whereas MuRF2a-GFP mainly exhibited a random pattern of punctate distribution. The MuRF1a-GFP signal appeared as small dots aligned along the M-lines of the sarcomeres in skeletal myofibers. To determine whether knockdown of smyd1b or hsp90α1 that increased myosin protein degradation could alter murf gene expression or MuRF protein localization, we knocked down smyd1b or hsp90α1 in wild type, Tg(ef1a:MurF1a-GFP) and Tg(ef1a:MuRF2a-GFP) transgenic zebrafish embryos. Knockdown of smyd1b or hsp90α1 had no effect on murf gene expression. However, the sarcomeric distribution of MuRF1a-GFP was abolished in the knockdown embryos. This was accompanied by an increased random punctate distribution of MuRF1a-GFP in muscle cells of zebrafish embryos. Collectively, these studies demonstrate that MuRFs are specifically expressed in developing muscles of zebrafish embryos. The M-line localization MuRF1a is altered by sarcomere disruption in smyd1b or hsp90α1 knockdown embryos.


Assuntos
Animais Geneticamente Modificados , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico HSP90 , Histona-Lisina N-Metiltransferase , Modelos Biológicos , Proteínas Recombinantes de Fusão , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/genética , Proteínas de Choque Térmico HSP90/biossíntese , Proteínas de Choque Térmico HSP90/genética , Histona-Lisina N-Metiltransferase/biossíntese , Histona-Lisina N-Metiltransferase/genética , Músculo Esquelético/embriologia , Proteínas Recombinantes de Fusão/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética
8.
Cell Rep ; 27(9): 2725-2736.e4, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141694

RESUMO

Precise assembly of the sarcomere, a force-generating unit in striated muscles, is critical for muscle contraction. Defective sarcomere organization is linked to myopathies and cachexia. The molecular mechanisms concerning sarcomere assembly are poorly understood. Here, we report that the SUMO-specific isopeptidase SENP3 determines sarcomere assembly by specifically regulating the sarcomeric contractile myosin heavy-chain gene MyHC-II. The contractile ability of mature muscle cells is severely compromised in SENP3-depleted cells. Mechanistically, SENP3 is associated with the SETD7 histone methyltransferase and deSUMOylates SETD7. By recruiting SETD7 to MyHC-II, SENP3 promotes association of SETD7 with transcriptionally active RNA polymerase II and precludes the opposing methyltransferase Suv39h1. Strikingly, SENP3 is degraded in cachexia, characterized by dramatic loss of sarcomeric protein, particularly MyHC-II. SENP3 regulation of SETD7 is impaired in cachexia, leading to perturbed MyHC-II expression and disorganized sarcomeres. Our findings reveal an unanticipated role of SENP3 in sarcomere assembly and cachexia.


Assuntos
Caquexia/fisiopatologia , Diferenciação Celular , Cisteína Endopeptidases/metabolismo , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Músculo Esquelético/fisiologia , Sarcômeros/fisiologia , Animais , Caquexia/metabolismo , Cisteína Endopeptidases/genética , Feminino , Histona-Lisina N-Metiltransferase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo
9.
Worm ; 5(2): e1161880, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27383012

RESUMO

Locomotion of C. elegans requires coordinated, efficient transmission of forces generated on the molecular scale by myosin and actin filaments in myocytes to dense bodies and the hypodermis and cuticle enveloping body wall muscles. The complex organization of the acto-myosin scaffold with its accessory proteins provides a fine-tuned machinery regulated by effectors that guarantees that sarcomere units undergo controlled, reversible cycles of contraction and relaxation. Actin filaments in sarcomeres dynamically undergo polymerization and depolymerization. In a recent study, the actin-binding protein DBN-1, the C. elegans ortholog of human drebrin and drebrin-like proteins, was discovered to stabilize actin in muscle cells. DBN-1 reversibly changes location between actin filaments and myosin-rich regions during muscle contraction. Mutations in DBN-1 result in mislocalization of other actin-binding proteins. Here we discuss implications of this finding for the regulation of sarcomere actin stability and the organization of other actin-binding proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA