RESUMO
Most vegetable crops are severely affected by the uptake of heavy metals from the soil. Heavy metals in vegetable bodies generate reactive oxygen species (ROS) that unbalance the antioxidant defense system. This study was initiated to determine the physiological and biochemical characteristics of spinach plants grown on soil contaminated with heavy metals and responding to Bacillus cereus and Bacillus aerius were isolated from soil contaminated with heavy metals. Heavy metal contamination led to a significant reduction in seed germination, seedling biomass, protein, and total nitrogen content of spinach plants grown in contaminated soils compared to control soils. In contrast, a significant increase in the content of metallothioneins and antioxidant enzymes was observed. Plants inoculated with B. cereus and B. aerius significantly reduced the oxidative stress induced by heavy metals by improving seed germination (%), seedling growth, nitrogen, and protein content. The content of metallothioneins and the activities of antioxidant enzymes were reduced in spinach plants grown from seeds inoculated with bacterial strains. In addition, plants inoculated with, B. cereus and B. aerius showed greater stomata opening than plants grown on soil contaminated with heavy metals, whose stomata were almost closed. These results suggested that both bacterial strains enhanced plant growth by reducing oxidative stress caused by metals.
Assuntos
Loratadina/análogos & derivados , Metais Pesados , Poluentes do Solo , Spinacia oleracea , Antioxidantes/metabolismo , Metais Pesados/toxicidade , Estresse Oxidativo , Bactérias/metabolismo , Solo/química , Plantas/metabolismo , Nitrogênio/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismoRESUMO
A novel combined setup, with a scanning thermal microscope (SThM) embedded in a scanning electron microscope (SEM), is used to characterize a suspended silicon rough nanowire (NW), which is epitaxially clamped at both sides and therefore monolithically integrated in a microfabricated device. The rough nature of the NW surface, which prohibits vacuum-SThM due to loose contact for heat dissipation, is circumvented by decorating the NW with periodic platinum dots. Reproducible approaches over these dots, enabled by the live feedback image provided by the SEM, yield a strong improvement in thermal contact resistance and a higher accuracy in its estimation. The results-thermal resistance at the tip-sample contact of 188±3.7K µW-1 and thermal conductivity of the NW of 13.7±1.6W m-1 K-1-are obtained by performing a series of approach curves on the dots. Noteworthy, the technique allows measuring elastic properties at the same time-the moment of inertia of the NW is found to be (6.1±1.0) × 10-30m4-which permits to correlate the respective effects of the rough shell on heat dissipation and on the NW stiffness. The work highlights the capabilities of the dual SThM/SEM instrument, in particular the interest of systematic approach curves with well-positioned and monitored tip motion.
RESUMO
BACKGROUND INFORMATION: The advancement of biological-mediated nanoscience towards higher levels and novel benchmarks is readily apparent, owing to the use of non-toxic synthesis processes and the incorporation of various additional benefits. This study aimed to synthesize stable tin oxide nanoparticles (SnO2-NPs) using S. rhizophila as a mediator. METHODS: The nanoparticles that were created by biosynthesis was examined using several analytical techniques, including Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), UV-visible (UV-vis) spectroscopy, and energy dispersive X-ray spectroscopy (EDS). RESULTS: The results obtained from the characterization techniques suggest that S. rhizophila effectively catalyzed the reduction of SnCl2 to SnO2-NPs duration of 90 min at ambient temperature with the Æmax of 328 nm. The size of the nano crystallite formations was measured to be 23 nm. The present study investigates nanoscale applications' antibacterial efficacy against four bacterial strains, including Klebsiella Sp, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The observed zone of inhibition for the nanoparticles (NPs) varied from 10 to 25 mm. The research findings demonstrate that the nanoparticles (NPs) are effective as antibacterial, phytotoxic, and cytotoxic agents.
Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Compostos de Estanho , Difração de Raios X , Compostos de Estanho/química , Compostos de Estanho/farmacologia , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Staphylococcus aureus/efeitos dos fármacos , Nanopartículas/química , Bactérias/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Microscopia Eletrônica de Varredura , Tamanho da PartículaRESUMO
Feather waste is a highly prevalent form of keratinous waste that is generated by the poultry industry. The global daily production of feather waste has been shown to approach 5 million tons, typically being disposed of through methods such as dumping, landfilling, or incineration which contribute significantly to environmental pollutions. The proper management of these keratinous wastes is crucial to avoid environmental contamination. The study was carried out to isolate the keratinolytic fungi from the poultry disposal sites of different region of North-East India to evaluate its potential in bioremediation of the feathers wastes. Out of 12 fungal strains isolated from the sites, the fungus showing the highest zone of hydrolysis on both the skim milk and keratin agar medium was selected for the study and the molecular identification of the isolate was performed through DNA sequence analysis by amplifying the internal transcribed spacer (ITS) region. The sequence results showed higher similarity (above 95%) with Aspergillus spp. and was named Aspergillus sp. Iro-1. The strain was further analyzed for its feather degrading potential which was performed in submerged conditions under optimized conditions. The study showed that the strain could effectively degrade the feathers validated through weight loss method, and the structural deformations in the feathers were visualized through scanning electron microscopy (SEM). Aspergillus sp. Iro-1 was obtained from the southern region of Assam. It would be of great importance as the implementation of this sp. can help in the bioremediation of feathers wastes in this region. This is the first study of identification of feather degrading fungus from southern part of Assam (Barak).
Assuntos
Peptídeo Hidrolases , Aves Domésticas , Animais , Aves Domésticas/microbiologia , Peptídeo Hidrolases/metabolismo , Fungos/genética , Fungos/metabolismo , Hidrólise , Biodegradação Ambiental , Queratinas/metabolismo , Concentração de Íons de Hidrogênio , Galinhas , TemperaturaRESUMO
When the first concrete was poured in 1949 for the Hungry Horse Dam (Montana, USA), pozzolan cements had already been used in several major North American dams, including Grand Coulee on the Columbia River (diatomaceous earth explored but ultimately not used), Friant on the San Joaquin River and Altus on the North Fork Red River (pumicite) and Bonneville on the Columbia River and Davis on the Colorado River (calcined clay). But Hungry Horse Dam stands out as the first dam constructed using coal combustion fly ash. Utilising 2.4 million cubic metres of concrete, the dam is located on the South Fork Flathead River, one of the tributaries feeding one of the nation's major waterways, the Columbia River, and closely related to the adjacent Glacier National Park. In this respect, Hungry Horse is directly connected to two momentous periods in modern history - the massive adoption in the 1950s of coal as fuel for power plants, and the ongoing threats to fresh water supply and the rapid retreat of alpine glaciers due to global warming. Two concrete cores from this dam, one with fly ash and one without fly ash, are examined microscopically to explore the long-term suppression of alkali-aggregate reaction by fly ash. The core without fly ash exhibits clear evidence of alkali-aggregate reaction, manifested by sandstone coarse aggregate particles with darkened reaction rims. Sandstone coarse aggregate particles of the same lithology in the core with fly ash are without signs of alkali-aggregate reaction. A detailed examination of the darkened rims indicates that alkali-silica reaction products fill the narrow gaps between adjacent sand grains in the sandstone. This alkali-silica gel infilling allows for optical continuity between adjacent sand grains and is responsible for the classic darkened rim associated with the alkali-aggregate reaction.
RESUMO
Due to metal toxicity, widespread industrialization has negatively impacted crop yield and soil quality. The current study was aimed to prepare and characterize biochar made from wood shavings of Pinus roxburghii and to determine the plant growth promoting and heavy metal detoxification of cadmium (Cd) and chromium (Cr) contaminated soil. FTIR SEM coupled with EDX characterization of biochar was performed; Cd and Cr were used at a rate of 20 mg/kg. Biochar was used at the rate of 50 mg/kg for various treatments. The completely randomized design (CRD) was used for the experiment and three replicates of each treatment were made. Various agronomic and enzymatic parameters were determined. The results indicated that all growth and enzymatic parameters were enhanced by the prepared biochar treatments. The most prominent results were observed in treatment T5 (in which shoot length, root length, peroxidase dismutase (POD), superoxide dismutase (SOD) catalyzes (CAT), and chlorophyll a and b increased by 28%, 23%, 40%, 41%, 42%, and 27%, respectively, compared to the control). This study demonstrated that biochar is a sustainable and cost-effective approach for the remediation of heavy metals, and plays a role in plant growth promotion. Farmers may benefit from the current findings, as prepared biochar is easier to deliver and more affordable than chemical fertilizers. Future research could clarify how to use biochar optimally, applying the minimum amount necessary while maximizing its benefits and increasing yield.
RESUMO
The study was focused on the anatomical characteristics of the Egyptian long-eared hedgehog's oral cavity by using gross and scanning electron microscopic examinations. The upper lip had an elongated T-shaped snout-like structure. The hard palate had a triangular rostral part (which had a semicircular area and a caudal ridged area with the first 3 or 4 ridges) and a caudal part (which contained seven or eight slightly oblique ridges with raphae). The diamond-incisive papilla is flanked on both sides by a groove and a fissure. The hard palate surface had glandular openings and a microplicae system. The uneven, soft palate's surface had multiple grooves and folds with 12-16 Gemmal papillae. The Gemmal papillary surface had three to four taste pores with microplicae and glandular openings. The dorsal lingual surface had six filiform subtypes: pointed (on the tip, rostral border, and median apical region), triangular (on the lateral apical and circumvallate regions), bifurcated (on the median tip only), leaf-like (on the median body region), branched (on the lateral root region), and small pointed papillae (on the median root). There were two fungiform subtypes: ovals (on the rostral border and lateral region) and rounds (on the median apical region and body). The caudal root part had a triangular arrangement of three circumvallate papillae. In conclusion, the finding confirmed its oral cavity adaptation with its insectivorous feeding habits and Egyptian environment.
Assuntos
Ouriços , Microscopia Eletrônica de Varredura , Boca , Animais , Microscopia Eletrônica de Varredura/veterinária , Ouriços/anatomia & histologia , Boca/anatomia & histologia , Boca/ultraestrutura , Língua/ultraestrutura , Língua/anatomia & histologia , Palato/ultraestrutura , Palato/anatomia & histologia , Soalho Bucal/ultraestrutura , Soalho Bucal/anatomia & histologia , Masculino , FemininoRESUMO
BACKGROUND: To evaluate visual performance after implantation of the TFNT (Acrysof Panoptix, Alcon, Fort Worth, Texas, USA) and CNWT (Clareon Panoptix, Alcon, Fort Worth, Texas, USA) intraocular lens (IOL), and compare the lens shape observed by scanning electron microscope (SEM). METHODS: Eighteen patients (18 eyes) received implantation of the CNWT and Twenty patients (20 eyes) received implantation of the TFNT. Exclusion criteria were previous ocular surgeries, ocular pathologies, or corneal abnormalities. Intervention or Observational Procedure(s): Postoperative examination at 1 months including manifest refraction; evaluation of refractive error, distance-corrected visual acuity (DCVA) at 5 m, 1 m, 70 cm, 50 cm, 40 cm, and 30 cm, slit-lamp examination; defocus curve testing; contrast sensitivity (CS) was performed. The lens shape of the TFNT and the CNWT was examined under SEM. RESULTS: Mean spherical equivalent was 0.11 ± 0.41 D (CNWT group) and 0.12 ± 0.34 D (TFNT group) 1 month postoperation. DCVA and defocus curve showed no significant difference between the two groups. CS was significantly higher in CNWT group than TFNT group at spatial frequencies of 6 cycles per degree (cpd). Observation of the IOL with a scanning electron microscope (SEM) revealed that CNWT group had improved diffraction structure and edge processing accuracy compared to TFNT group. CONCLUSION: There was no significant difference between the two groups in the defocus curve and visual acuity at all distances. CS was better in the CNWT group than in the TFNT group. IOL surface features may affect CS.
Assuntos
Lentes Intraoculares , Facoemulsificação , Humanos , Microscopia Eletrônica de Varredura , Implante de Lente Intraocular , Pseudofacia/cirurgia , Visão Binocular , Refração Ocular , Desenho de PróteseRESUMO
OBJECTIVE: Age-related changes in the fiber structure around adipocytes were investigated via scanning electron microscopy (SEM) of excised skin tissues. In addition, the viscoelasticity of the subcutaneous fat layer was evaluated via elastography, and the association between the fiber structure and the viscoelastic properties was assessed. METHODS: Skin tissues excised from the facial cheek area were used. Then, SEM images of these tissues were obtained. The thickness and quantity of the fibers around adipocytes were assessed using a 5-point scale. The score was used to grade 18 tissue samples. Moreover, the viscoelasticity of the subcutaneous fat layer in the same samples was evaluated via ultrasound elastography. RESULTS: Based on the SEM image score, an association was observed between the fiber status score and age, thereby indicating a tendency toward age-related fibrosis. Fiber structures with high scores, which indicate fibrosis, had a significantly lower viscoelasticity based on ultrasound elastography. CONCLUSION: The thickness and quantity of fibrous structures around adipocytes in the subcutaneous fat layer increase with age, and these changes can be associated with decreased viscoelasticity in the subcutaneous fat layer.
Assuntos
Adipócitos , Pele , Humanos , Pele/diagnóstico por imagem , Bochecha/diagnóstico por imagem , Gordura Subcutânea/diagnóstico por imagem , FibroseRESUMO
Syzgium cumini (L.) Skeels powder (S. cumini powder), also known as Jamun, is well-known for its various medical and health benefits. It is especially recognized for its antidiabetic and antioxidant properties. Thus, S. cumini powder is used in various industries, such as the food and cosmetic industries. In this work, the fruit of S. cumini was utilized; its seeds were extracted, dried, and ground into powder. The ground powders were subjected to various techniques such as physicochemical tests, Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), particle size analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and antioxidant analysis. From the physicochemical tests, it was revealed that the jamun seed filler contained cellulose (43.28%), hemicellulose (19.88%), lignin (23.28%), pectin (12.58%), and wax (0.98%). The FTIR analysis supported these results. For instance, a peak at 2889 cm-1 was observed and associated with CH stretching, typically found in methyl and methylene groups, characteristic of cellulose and hemicellulose structures. The XRD results demonstrated that the crystallinity index of the jamun seed filler was 42.63%. The particle analysis indicated that the mean (average) particle size was 25.34 µm. This observation was ensured with SEM results. The EDX spectrum results showed the elemental composition of the fillers. Regarding thermal degradation, the jamun seed filler had the ability to withstand temperatures of up to 316.5 °C. Furthermore, endothermic and exothermic peaks were observed at 305 °C and 400 °C, respectively. Furthermore, the antioxidant property of the powder displayed a peak scavenging activity of 91.4%. This comprehensive study not only underscores the viability of S. cumini powder as a sustainable and effective particulate filler in polymer composites but also demonstrates its potential to enhance the mechanical properties of composites, thereby offering significant implications for the development of eco-friendly materials in various industrial applications.
RESUMO
Invasive fungal infections including invasive pulmonary aspergillosis (IPA) generally have a poor prognosis, because the fungi spread throughout various organs. Therefore, it is important to accurately identify the fungal species for treatment. In this article, we present the results of pathological and molecular morphological analyses that were performed to elucidate the cause of respiratory failure in a patient who died despite suspicion of IPA and treatment with micafungin (MCFG). Pathological analysis revealed the existence of cystic and linear fungi in lung tissue. The fungi were identified as Aspergillus fumigatus (A. fumigatus) by partial sequencing of genomic DNA. Correlative light microscopy and electron microscopy (CLEM) analysis confirmed that fungi observed with light microscopy can also be observed with scanning electron microscopy (SEM) using formalin-fixed paraffin-embedded tissue sections. SEM revealed an atypical ultrastructure of the fungi including inhomogeneous widths, rough surfaces, and numerous cyst-like structures of various sizes. The fungi showed several morphological changes of cultured A. fumigatus treated with MCFG that were previously reported. Our results indicate that integrated analysis of ultrastructural observation by SEM and DNA sequencing may be an effective tool for analyzing fungi that are difficult to identify by conventional pathological analysis.
Assuntos
Aspergillus fumigatus , Microscopia Eletrônica de Varredura , Inclusão em Parafina , Aspergillus fumigatus/ultraestrutura , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , Humanos , Pulmão/microbiologia , Pulmão/patologia , Pulmão/ultraestrutura , Aspergilose Pulmonar Invasiva/diagnóstico , Aspergilose Pulmonar Invasiva/microbiologia , Aspergilose Pulmonar Invasiva/patologia , Masculino , Formaldeído , Micafungina , Análise de Sequência de DNA , DNA Fúngico/genética , Equinocandinas/farmacologia , Fixação de Tecidos/métodosRESUMO
BACKGROUND: Once bioceramic sealer (BCS) enters the dentinal tubules, it cannot be reliably removed. BCS-occupied dentinal tubules reduce fibre post retention strength. Coating gutta-percha with BCS only on the apical portion may improve post retention strength due to increased retention strength between the dentin and resin cement interface. The aim of the study was to test this hypothesis. METHODS: Root canals of 27 extracted human mandibular premolars were instrumented and randomly assigned to three obturation methods: conventional coating (CC), non-coating (NC), and apical coating (AC). The root canals were obturated with gutta-percha to 4 mm from the working length under an operating microscope. After the BCS was completely set, post spaces were prepared, and quartz fibre posts were cemented. The apical 4.5 mm of the roots were removed. Two samples were prepared at the apical, middle, and coronal root levels (one for scanning electron microscope (SEM) study and another for the push out bond strength (PBS) test). After the PBS test, the samples were examined with a stereo microscope to determine the failure mode: dentine-cement (DC), post-cement (PC) and mixed. The PBS data were analysed by One way ANOVA for the specific obturation method effects. Repeated ANOVA was used for the specific effects of the root levels on PBS in different obturation methods. RESULTS: At all three root levels, more continuous hybrid layers and denser resin tags were found in the NC and AC than the CC group. The AC and NC groups' PBS was significantly higher than the CC group at the apical 1/3 (p = 0.002 and p = 0.001) and coronal 1/3 (p = 0.016 and p = 0.041). The PBS in the CC group at the middle 1/3 was significantly higher than the apical 1/3 (p = 0.022). DC failure mode was most commonly found in the CC group, while PC failure mode was found most frequently in the NC and AC groups. CONCLUSIONS: The apical coating obturation method significantly increased PBS over the conventional coating method, potentially reducing fiber post dislodgement. However, this study was only preliminary. Clinical studies are required to confirm the results.
Assuntos
Colagem Dentária , Materiais Restauradores do Canal Radicular , Humanos , Materiais Restauradores do Canal Radicular/farmacologia , Guta-Percha , Colagem Dentária/métodos , Cimentos de Ionômeros de Vidro , Cimentos de Resina/química , Dentina , Teste de Materiais , Cavidade Pulpar , Obturação do Canal Radicular/métodosRESUMO
BACKGROUND: This study aimed to compare the marginal adaptation of a single customized gutta percha cone with calcium silicate-based sealer versus mineral trioxide aggregate (MTA) and Biodentine apical plugs in simulated immature permanent teeth. METHODS: Thirty-nine extracted human maxillary anterior teeth were selected, prepared to simulate immature permanent teeth with an apical diameter 1.1 mm, placed in moist foam and divided into three groups. Group 1: Obturation with a single customized gutta percha cone and calcium silicate sealer. Group 2: MTA apical plug. Group 3: Biodentine apical plug. After incubation, teeth were horizontally sectioned at 1 mm and 3 mm from the apex and marginal adaptation was evaluated using scanning electron microscope (SEM). RESULTS: Biodentine showed the least mean gap size at both 1 and 3 mm from the apex with no statistically significant differences compared to MTA (p > 0.05). The single customized cone with calcium silicate based sealer showed the greatest mean gap size at both 1 and 3 mm from the apex with a statistically significant difference compared to the other groups (p < 0.001). CONCLUSION: Biodentine and MTA apical plugs provide a significantly better marginal adaptation to the dentinal walls than a single customized gutta percha cone with calcium silicate based sealer in simulated immature permanent teeth.
Assuntos
Compostos de Alumínio , Compostos de Cálcio , Adaptação Marginal Dentária , Combinação de Medicamentos , Guta-Percha , Óxidos , Materiais Restauradores do Canal Radicular , Silicatos , Humanos , Guta-Percha/uso terapêutico , Técnicas In Vitro , Obturação do Canal Radicular/métodos , Microscopia Eletrônica de Varredura , Ápice Dentário/efeitos dos fármacos , Teste de MateriaisRESUMO
Aluminum (Al) is a concentration-dependent toxic metal found in the crust of earth that has no recognized biological use. Nonetheless, the mechanism of Al toxicity to submerged plants remains obscure, especially from a cell/subcellular structure and functional group perspective. Therefore, multiple dosages of Al3+ (0, 0.3, 0.6, 1.2, and 1.5 mg/L) were applied hydroponically to the submerged plant Vallisneria natans in order to determine the accumulation potential of Al at the subcellular level and their ultrastructural toxicity. More severe structural and ultrastructural damage was determined when V. natans exposed to ≥ 0.6 mg/L Al3+. In 1.2 and 1.5 mg/L Al3+ treatment groups, the total chlorophyll content of leaves significantly reduced 3.342, 3.838 mg/g FW, some leaves even exhibited chlorosis and fragility. Under 0.3 mg/L Al3+ exposure, the middle-age and young leaves were potent phytoexcluders, whereas at 1.5 mg/L Al3+, a large amount of Al could be transferred from the roots to other parts, among which the aged leaves were the most receptive tissues (7.306 mg/g). Scanning/Transmission electron microscopy analysis displayed the Al-mediated disruption of vascular bundle structure in leaf cells, intercellular space and several vegetative tissues, and demonstrated that Al in vacuole and chloroplast subcellular segregation into electron dense deposition. Al and P accumulation in the roots, stolons and leaves varied significantly among treatments and different tissues (P < 0.05). Fourier transform infrared spectroscopy of plant biomass also indicated possible metabolites (amine, unsaturated hydrocarbon, etc.) of V. natans that may bind Al3+. Conclusively, results revealed that Al3+ disrupts the cellular structure of leaves and roots or binds to functional groups of biological tissues, thereby affecting plant nutrient uptake and photosynthesis. Findings might have scientific and practical significance for the restoration of submerged vegetation in Al-contaminated lakes.
Assuntos
Hydrocharitaceae , Toxinas Biológicas , Alumínio/metabolismo , Clorofila/metabolismo , Fotossíntese , Plantas/metabolismo , Hydrocharitaceae/metabolismo , Folhas de Planta/metabolismoRESUMO
AIM: To compare design, metallurgy and mechanical performance of the ProTaper (PT) Ultimate system with instruments of similar dimensions from the ProGlider, PT Gold and PT Universal systems. METHODOLOGY: New PT Ultimate instruments (n = 248) were compared with instruments of similar dimensions from ProGlider (n = 31), PT Gold (n = 155) and PT Universal (n = 155) systems regarding their number of spirals, helical angle, blade symmetry, tip geometry, surface finishing, nickel/titanium ratio, phase transformation temperatures and mechanical performance. One-way anova and nonparametric Mood's median tests were used for statistical comparison (α = 5%). RESULTS: All instruments had symmetrical blades without radial lands or flat sides, similar surface finishing and an almost equiatomic nickel/titanium ratio, whilst the number of spirals, helical angles and the tip geometry were different. PT Ultimate instruments showed 3 distinct heat treatments that matched with the colour of their metal wire. Slider and ProGlider instruments had similar R-phase start (Rs) and R-phase finish (Rf) temperatures. SX, F1, F2, F3 and Shaper instruments showed equivalent heat treatments (Rs ~45.6°C and Rf ~28.3°C) that were similar to their PT Gold counterparts (Rs ~47.9°C and Rf ~28.2°C), but completely distinct to the PT Universal ones (Rs ~16.2°C and Rf ~-18.2°C). Amongst the PT Ultimate instruments, the lowest maximum torques were observed in the SX (0.44 N cm), Slider (0.45 N cm) and Shaper (0.60 N cm) instruments, whilst the highest was noted in the FXL (4.90 N cm). PT Ultimate Slider and ProGlider had similar torsional (~0.40 N cm) and bending loads (~145.0 gf) (p = 1.000), whilst the other PT Ultimate instruments showed statistically significantly lower maximum torque, higher angle of rotation and lower bending load (higher flexibility) than their counterparts of the PT Universal and PT Gold systems. CONCLUSIONS: The PT Ultimate system comprises instruments with 3 distinct heat treatments that showed similar phase transformation temperatures to their heat-treated analogues. PT Ultimate instruments presented lower torsional strength and superior flexibility than their counterparts, whilst maximum torque, angle of rotation and bending loads progressively increased with their sizes.
Assuntos
Níquel , Titânio , Temperatura Alta , Falha de Equipamento , Teste de Materiais , Ligas Dentárias , Preparo de Canal Radicular , Desenho de Equipamento , Torção MecânicaRESUMO
Electron microscopes can observe samples with a spatial resolution of 10 nm or higher; however, they cannot observe samples in solutions due to the vacuum conditions inside the sample chamber. Recently, we developed a scanning electron-assisted dielectric microscope (SE-ADM), based on scanning electron microscope, which enables the observation of various specimens in solution. Until now, the SE-ADM system used a custom-made SE-ADM stage with a built-in amplifier and could not be linked to the scanning electron microscopy (SEM) operation system. Therefore, it was necessary to manually acquire images from the SE-ADM system after setting the EB focus, astigmatism, and observation field-of-view from the SEM operating console. In this study, we developed a general-purpose dielectric constant imaging unit attached to commercially available SEMs. The new SE-ADM unit can be directly attached to the standard stage of an SEM, and the dielectric signal detected from this unit can be input to the external input terminal of the SEM, enabling simultaneous observation yielding SEM and SE-ADM images. Furthermore, 4.5 nm spatial resolution was achieved using a 10 nm thick silicon nitride film in the sample holder in the observation of aggregated PM2.5. We carried out the observation of cultured cells, PM2.5, and clay samples in solution.
RESUMO
Heat-treated FeCo-based magnetic alloys were characterized using a suite of electron microscopy techniques to gain insight into their structural properties. Electron channeling contrast imaging (ECCI) in the scanning electron microscope (SEM) found unique grains towards the outer edge of a FeCo sample with nonuniform background contrast. High-magnification ECCI imaging of these nonuniform grains revealed a weblike network of defects that were not observed in standard uniform background contrast grains. High-resolution electron backscattered diffraction (HR-EBSD) confirmed these defect structures to be dislocation networks and additionally found subgrain boundaries within the nonuniform contrast grains. The defect content within these grains suggests that they are unrecrystallized grains, and ECCI can be used as a rapid method to quantify unrecrystallized grains. To demonstrate the insight that can be garnered via ECCI on these unique grains, the sample was imaged before and after micro indentation. This experiment showed that slip bands propagate throughout the material until interacting with the dislocation networks, suggesting that these specific defects provide a barrier to plastic deformation. Taken together, these results show how ECCI can be used to better understand failure mechanisms in alloys and provides further evidence that dislocation networks play a critical role in the brittle failure of FeCo alloys.
RESUMO
Low-voltage scanning electron microscopy is a powerful tool for examining surface features and imaging beam-sensitive materials. Improving resolution during low-voltage imaging is then an important area of development. Decreasing the effect of chromatic aberration is one solution to improving the resolution and can be achieved by reducing the energy spread of the electron source. Our approach involves retrofitting a light source onto a thermionic lanthanum hexaboride (LaB6) electron gun as a cost-effective low energy-spread photoelectron emitter. The energy spread of the emitter's photoelectrons is theorized to be between 0.11 and 0.38 eV, depending on the photon energy of the ultraviolet (UV) light source. Proof-of-principle images have been recorded using this retrofitted photoelectron gun, and an analysis of its performance is presented.
RESUMO
Understanding how minerals are spatially distributed within natural materials and their textures is indispensable to understanding the fundamental processes of how these materials form and how they will behave from a mining engineering perspective. In the past few years, laboratory diffraction contrast tomography (LabDCT) has emerged as a nondestructive technique for 3D mapping of crystallographic orientations in polycrystalline samples. In this study, we demonstrate the application of LabDCT on both chromite sand and a complex chromitite sample from the Merensky Reef (Bushveld Complex, South Africa). Both samples were scanned using LabDCT and Electron Backscatter Diffraction (EBSD), and the obtained results were rigorously evaluated using a comprehensive set of qualitative and quantitative characterization techniques. The quality of LabDCT results was accessed by using the "completeness" value, while the inaccuracies were thoroughly discussed, along with proposed potential solutions. The results indicate that the grain orientations obtained from LabDCT are comparable to that of 2D EBSD but have the advantage of collecting true 3D size, shape, and textural information. This study highlights the significant contribution of LabDCT in the understanding of complex rock materials from an earth science perspective, particularly in characterizing mineral texture and crystallography in 3D.
RESUMO
It is essential to understand the nanoscale structure and chemistry of energy storage materials due to their profound impact on battery performance. However, it is often challenging to characterize them at high resolution, as they are often fundamentally altered by sample preparation methods. Here, we use the cryogenic lift-out technique in a plasma-focused ion beam (PFIB)/scanning electron microscope (SEM) to prepare air-sensitive lithium metal to understand ion-beam damage during sample preparation. Through the use of cryogenic transmission electron microscopy, we find that lithium was not damaged by ion-beam milling although lithium oxide shells form in the PFIB/SEM chamber, as evidenced by diffraction information from cryogenic lift-out lithium lamellae prepared at two different thicknesses (130 and 225 nm). Cryogenic energy loss spectroscopy further confirms that lithium was oxidized during the process of sample preparation. The Ellingham diagram suggests that lithium can react with trace oxygen gas in the FIB/SEM chamber at cryogenic temperatures, and we show that liquid oxygen does not contribute to the oxidation of lithium process. Our results suggest the importance of understanding how cryogenic lift-out sample preparation has an impact on the high-resolution characterization of reactive battery materials.