Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.213
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2209196121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38640256

RESUMO

Increasing the speed of scientific progress is urgently needed to address the many challenges associated with the biosphere in the Anthropocene. Consequently, the critical question becomes: How can science most rapidly progress to address large, complex global problems? We suggest that the lag in the development of a more predictive science of the biosphere is not only because the biosphere is so much more complex, or because we do not have enough data, or are not doing enough experiments, but, in large part, because of unresolved tension between the three dominant scientific cultures that pervade the research community. We introduce and explain the concept of the three scientific cultures and present a novel analysis of their characteristics, supported by examples and a formal mathematical definition/representation of what this means and implies. The three cultures operate, to varying degrees, across all of science. However, within the biosciences, and in contrast to some of the other sciences, they remain relatively more separated, and their lack of integration has hindered their potential power and insight. Our solution to accelerating a broader, predictive science of the biosphere is to enhance integration of scientific cultures. The process of integration-Scientific Transculturalism-recognizes that the push for interdisciplinary research, in general, is just not enough. Unless these cultures of science are formally appreciated and their thinking iteratively integrated into scientific discovery and advancement, there will continue to be numerous significant challenges that will increasingly limit forecasting and prediction efforts.


Assuntos
Previsões , Matemática
2.
Proc Natl Acad Sci U S A ; 120(39): e2310903120, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37729201

RESUMO

Advancing new ideas of rechargeable batteries represents an important path to meeting the ever-increasing energy storage needs. Recently, we showed rechargeable sodium/chlorine (Na/Cl2) (or lithium/chlorine Li/Cl2) batteries that used a Na (or Li) metal negative electrode, a microporous amorphous carbon nanosphere (aCNS) positive electrode, and an electrolyte containing dissolved aluminum chloride and fluoride additives in thionyl chloride [G. Zhu et al., Nature 596, 525-530 (2021) and G. Zhu et al., J. Am. Chem. Soc. 144, 22505-22513 (2022)]. The main battery redox reaction involved conversion between NaCl and Cl2 trapped in the carbon positive electrode, delivering a cyclable capacity of up to 1,200 mAh g-1 (based on positive electrode mass) at a ~3.5 V discharge voltage [G. Zhu et al., Nature 596, 525-530 (2021) and G. Zhu et al., J. Am. Chem. Soc. 144, 22505-22513 (2022)]. Here, we identified by X-ray photoelectron spectroscopy (XPS) that upon charging a Na/Cl2 battery, chlorination of carbon in the positive electrode occurred to form carbon-chlorine (C-Cl) accompanied by molecular Cl2 infiltrating the porous aCNS, consistent with Cl2 probed by mass spectrometry. Synchrotron X-ray diffraction observed the development of graphitic ordering in the initially amorphous aCNS under battery charging when the carbon matrix was oxidized/chlorinated and infiltrated with Cl2. The C-Cl, Cl2 species and graphitic ordering were reversible upon discharge, accompanied by NaCl formation. The results revealed redox conversion between NaCl and Cl2, reversible graphitic ordering/amorphourization of carbon through battery charge/discharge, and probed trapped Cl2 in porous carbon by XPS.

3.
Stem Cells ; 42(4): 385-401, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38206366

RESUMO

Pancreatic ductal progenitor cells have been proposed to contribute to adult tissue maintenance and regeneration after injury, but the identity of such ductal cells remains elusive. Here, from adult mice, we identify a near homogenous population of ductal progenitor-like clusters, with an average of 8 cells per cluster. They are a rare subpopulation, about 0.1% of the total pancreatic cells, and can be sorted using a fluorescence-activated cell sorter with the CD133highCD71lowFSCmid-high phenotype. They exhibit properties in self-renewal and tri-lineage differentiation (including endocrine-like cells) in a unique 3-dimensional colony assay system. An in vitro lineage tracing experiment, using a novel HprtDsRed/+ mouse model, demonstrates that a single cell from a cluster clonally gives rise to a colony. Droplet RNAseq analysis demonstrates that these ductal clusters express embryonic multipotent progenitor cell markers Sox9, Pdx1, and Nkx6-1, and genes involved in actin cytoskeleton regulation, inflammation responses, organ development, and cancer. Surprisingly, these ductal clusters resist prolonged trypsin digestion in vitro, preferentially survive in vivo after a severe acinar cell injury and become proliferative within 14 days post-injury. Thus, the ductal clusters are the fundamental units of progenitor-like cells in the adult murine pancreas with implications in diabetes treatment and tumorigenicity.


Assuntos
Células Acinares , Ductos Pancreáticos , Camundongos , Animais , Pâncreas , Células-Tronco , Diferenciação Celular
9.
Nature ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085633
11.
12.
Nature ; 627(8005): 740-741, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38538935
14.
Nature ; 627(8003): 458, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38467882
15.
Nature ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233546
18.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA