Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 173(5): 1231-1243.e16, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29731171

RESUMO

Ubiquitination constitutes one of the most important signaling mechanisms in eukaryotes. Conventional ubiquitination is catalyzed by the universally conserved E1-E2-E3 three-enzyme cascade in an ATP-dependent manner. The newly identified SidE family effectors of the pathogen Legionella pneumophila ubiquitinate several human proteins by a different mechanism without engaging any of the conventional ubiquitination machinery. We now report the crystal structures of SidE alone and in complex with ubiquitin, NAD, and ADP-ribose, thereby capturing different conformations of SidE before and after ubiquitin and ligand binding. The structures of ubiquitin bound to both mART and PDE domains reveal several unique features of the two reaction steps catalyzed by SidE. Further, the structural and biochemical results demonstrate that SidE family members do not recognize specific structural folds of the substrate proteins. Our studies provide both structural explanations for the functional observations and new insights into the molecular mechanisms of this non-canonical ubiquitination machinery.


Assuntos
Proteínas de Bactérias/química , Legionella pneumophila/metabolismo , Diester Fosfórico Hidrolases/química , Ubiquitina/química , Proteínas de Bactérias/metabolismo , Biocatálise , Cristalografia por Raios X , Dimerização , Diester Fosfórico Hidrolases/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Quaternária de Proteína , Ubiquitina/metabolismo , Ubiquitinação
2.
Mol Cell ; 81(21): 4527-4539.e8, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34407442

RESUMO

The kinase domain transfers phosphate from ATP to substrates. However, the Legionella effector SidJ adopts a kinase fold, yet catalyzes calmodulin (CaM)-dependent glutamylation to inactivate the SidE ubiquitin ligases. The structural and mechanistic basis in which the kinase domain catalyzes protein glutamylation is unknown. Here we present cryo-EM reconstructions of SidJ:CaM:SidE reaction intermediate complexes. We show that the kinase-like active site of SidJ adenylates an active-site Glu in SidE, resulting in the formation of a stable reaction intermediate complex. An insertion in the catalytic loop of the kinase domain positions the donor Glu near the acyl-adenylate for peptide bond formation. Our structural analysis led us to discover that the SidJ paralog SdjA is a glutamylase that differentially regulates the SidE ligases during Legionella infection. Our results uncover the structural and mechanistic basis in which the kinase fold catalyzes non-ribosomal amino acid ligations and reveal an unappreciated level of SidE-family regulation.


Assuntos
Proteínas de Bactérias/química , Dobramento de Proteína , Proteínas/química , Fatores de Virulência/química , Proteínas de Bactérias/metabolismo , Calmodulina/química , Catálise , Domínio Catalítico , Microscopia Crioeletrônica , Legionella/enzimologia , Mutagênese , Peptídeos/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Espectrometria de Fluorescência , Ubiquitina-Proteína Ligases/química , Fatores de Virulência/metabolismo
3.
Mol Cell ; 77(1): 164-179.e6, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31732457

RESUMO

The family of bacterial SidE enzymes catalyzes non-canonical phosphoribosyl-linked (PR) serine ubiquitination and promotes infectivity of Legionella pneumophila. Here, we describe identification of two bacterial effectors that reverse PR ubiquitination and are thus named deubiquitinases for PR ubiquitination (DUPs; DupA and DupB). Structural analyses revealed that DupA and SidE ubiquitin ligases harbor a highly homologous catalytic phosphodiesterase (PDE) domain. However, unlike SidE ubiquitin ligases, DupA displays increased affinity to PR-ubiquitinated substrates, which allows DupA to cleave PR ubiquitin from substrates. Interfering with DupA-ubiquitin binding switches its activity toward SidE-type ligase. Given the high affinity of DupA to PR-ubiquitinated substrates, we exploited a catalytically inactive DupA mutant to trap and identify more than 180 PR-ubiquitinated host proteins in Legionella-infected cells. Proteins involved in endoplasmic reticulum (ER) fragmentation and membrane recruitment to Legionella-containing vacuoles (LCV) emerged as major SidE targets. The global map of PR-ubiquitinated substrates provides critical insights into host-pathogen interactions during Legionella infection.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Serina/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Células A549 , Proteínas de Bactérias/metabolismo , Domínio Catalítico/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Legionella pneumophila/patogenicidade , Doença dos Legionários/metabolismo , Vacúolos/metabolismo
4.
J Environ Manage ; 364: 121319, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38875978

RESUMO

Undesirable outputs can be challenging to avoid in the production of goods and services, often overlooked. Pollution is generally regarded as a negative externality and is taken into account during the production process. The novelty of this study lies in introducing CO2 as an economic "bad" in the energy sector's efficiency measure through a stochastic data envelopment analysis (DEA) cross-efficiency model. Unlike pollution and economic goods, where increased production leads to more pollution, CO2 is weakly disposable, meaning that higher CO2 values lead to a decrease in the number of good outputs produced. The study proposes a new stochastic model based on an extension of the cross-efficiency model and applies it to measure the energy efficiency of 32 thermal power plants in Angola in the presence of undesirable outputs. This will help promote better environmental management. The study's findings offer vital policy insights for the energy sector. The introduction of new stochastic models enables more accurate efficiency measurement under uncertain conditions, aiding policymakers in resource allocation decisions. Additionally, the adoption of stochastic cross-efficiency methods enhances performance assessments, facilitating targeted interventions for underperforming units. These findings contribute to evidence-based policymaking, promoting sustainability and competitiveness within the energy sector.


Assuntos
Processos Estocásticos , Modelos Teóricos , Centrais Elétricas , Dióxido de Carbono/análise
5.
Proc Natl Acad Sci U S A ; 116(47): 23518-23526, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31690664

RESUMO

Posttranslational protein modification by ubiquitin (Ub) is a central eukaryotic mechanism that regulates a plethora of physiological processes. Recent studies unveiled an unconventional type of ubiquitination mediated by the SidE family of Legionella pneumophila effectors, such as SdeA, that catalyzes the conjugation of Ub to a serine residue of target proteins via a phosphoribosyl linker (hence named PR-ubiquitination). Comparable to the deubiquitinases in the canonical ubiquitination pathway, here we show that 2 paralogous Legionella effectors, Lpg2154 (DupA; deubiquitinase for PR-ubiquitination) and Lpg2509 (DupB), reverse PR-ubiquitination by specific removal of phosphoribosyl-Ub from substrates. Both DupA and DupB are fully capable of rescuing the Golgi fragmentation phenotype caused by exogenous expression of SdeA in mammalian cells. We further show that deletion of these 2 genes results in significant accumulation of PR-ubiquitinated species in host cells infected with Legionella In addition, we have identified a list of specific PR-ubiquitinated host targets and show that DupA and DupB play a role in modulating the association of PR-ubiquitinated host targets with Legionella-containing vacuoles. Together, our data establish a complete PR-ubiquitination and deubiquitination cycle and demonstrate the intricate control that Legionella has over this unusual Ub-dependent posttranslational modification.


Assuntos
Proteínas de Bactérias/metabolismo , Enzimas Desubiquitinantes/metabolismo , Legionella pneumophila/metabolismo , Diester Fosfórico Hidrolases/metabolismo , ADP-Ribosilação , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Ubiquitina , Ubiquitinação , Vacúolos/microbiologia
6.
Microbiol Spectr ; 11(3): e0162723, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37195179

RESUMO

Thermotolerance is a remarkable virulence attribute of Aspergillus fumigatus, but the consequences of heat shock (HS) to the cell membrane of this fungus are unknown, although this structure is one of the first to detect changes in ambient temperature that imposes on the cell a prompt adaptative response. Under high-temperature stress, fungi trigger the HS response controlled by heat shock transcription factors, such as HsfA, which regulates the expression of heat shock proteins. In yeast, smaller amounts of phospholipids with unsaturated fatty acid (FA) chains are synthesized in response to HS, directly affecting plasma membrane composition. The addition of double bonds in saturated FA is catalyzed by Δ9-fatty acid desaturases, whose expression is temperature-modulated. However, the relationship between HS and saturated/unsaturated FA balance in membrane lipids of A. fumigatus in response to HS has not been investigated. Here, we found that HsfA responds to plasma membrane stress and has a role in sphingolipid and phospholipid unsaturated biosynthesis. In addition, we studied the A. fumigatus Δ9-fatty acid desaturase sdeA and discovered that this gene is essential and required for unsaturated FA biosynthesis, although it did not directly affect the total levels of phospholipids and sphingolipids. sdeA depletion significantly sensitizes mature A. fumigatus biofilms to caspofungin. Also, we demonstrate that hsfA controls sdeA expression, while SdeA and Hsp90 physically interact. Our results suggest that HsfA is required for the adaptation of the fungal plasma membrane to HS and point out a sharp relationship between thermotolerance and FA metabolism in A. fumigatus. IMPORTANCE Aspergillus fumigatus causes invasive pulmonary aspergillosis, a life-threatening infection accounting for high mortality rates in immunocompromised patients. The ability of this organism to grow at elevated temperatures is long recognized as an essential attribute for this mold to cause disease. A. fumigatus responds to heat stress by activating heat shock transcription factors and chaperones to orchestrate cellular responses that protect the fungus against damage caused by heat. Concomitantly, the cell membrane must adapt to heat and maintain physical and chemical properties such as the balance between saturated/unsaturated fatty acids. However, how A. fumigatus connects these two physiological responses is unclear. Here, we explain that HsfA affects the synthesis of complex membrane lipids such as phospholipids and sphingolipids and controls the enzyme SdeA, which produces monounsaturated fatty acids, raw material for membrane lipids. These findings suggest that forced dysregulation of saturated/unsaturated fatty acid balance might represent novel strategies for antifungal therapy.


Assuntos
Aspergillus fumigatus , Termotolerância , Humanos , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Termotolerância/fisiologia , Fatores de Transcrição de Choque Térmico/metabolismo , Ácidos Graxos/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosfolipídeos/metabolismo , Lipídeos de Membrana/metabolismo , Esfingolipídeos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
7.
Cell Rep ; 42(8): 112817, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37471226

RESUMO

Xenophagy is an evolutionarily conserved host defensive mechanism to eliminate invading microorganisms through autophagic machinery. The intracellular bacterial pathogen Legionella pneumophila can avoid clearance by the xenophagy pathway via the actions of multiple Dot/Icm effector proteins. Previous studies have shown that p62, an adaptor protein involved in xenophagy signaling, is excluded from Legionella-containing vacuoles (LCVs). Such defects are attributed to the multifunctional SidE family effectors (SidEs) that exhibit classic deubiquitinase (DUB) and phosphoribosyl ubiquitination (PR-ubiquitination) activities, yet the mechanism remains elusive. In the present study, we demonstrate that the host DUB USP14 is PR-ubiquitinated by SidEs at multiple serine residues, which impairs its DUB activity and its interactions with p62. The exclusion of p62 from the bacterial phagosome requires the ubiquitin ligase but not the DUB activity of SidEs. These results reveal that PR-ubiquitination of USP14 by SidEs contributes to the evasion of xenophagic clearance by L. pneumophila.


Assuntos
Legionella , Doença dos Legionários , Humanos , Legionella/metabolismo , Doença dos Legionários/metabolismo , Serina/metabolismo , Proteínas de Bactérias/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Fagossomos/metabolismo , Vacúolos/metabolismo , Ubiquitina Tiolesterase/metabolismo
8.
Ther Innov Regul Sci ; 57(5): 1017-1029, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37270450

RESUMO

The pharmacovigilance agreements (PVA) landscape has evolved over recent decades with rapid growth in the number and complexity of partnerships, mergers, and acquisitions between pharmaceutical companies. Simultaneously there has been increasing scrutiny from regulatory authorities. Detailed regulations and guidance are lacking in this domain; hence companies have developed their own processes, templates, and tools, which have headed in different directions. Where feasible, marketing authorization holders (MAHs) have written contracts based on mutually understood requirements. Currently, MAHs are striving to find optimal solutions that safeguard patients, and in turn, support pharmacovigilance compliance. Through the TransCelerate BioPharma consortium MAHs are seeking simplification and efficiencies, to optimize the process of developing contractual agreements for pharmacovigilance. A survey of MAHs confirmed the perceptions above, and the need for efficient solutions to help navigate through the maze of complexity. The authors have led the development of tools and techniques to enable partnership between MAHs, and ultimately to support patient safety.


Assuntos
Negociação , Farmacovigilância , Humanos , Segurança do Paciente
9.
Bio Protoc ; 10(19): e3770, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659428

RESUMO

The Legionella effector protein SidJ has recently been identified to perform polyglutamylation on another Legionella effector, SdeA, ablating SdeA's activity. SidJ is a kinase-like protein that requires the small eukaryotic protein calmodulin to perform glutamylation. Glutamylation is a relatively uncommon type of post-translational modification, where the amino group of a free glutamate amino acid is covalently linked to the γ-carboxyl group of a glutamate sidechain in a substrate protein. This protocol describes the SidJ glutamylation reaction using radioactive [U-14C] glutamate and its substrate SdeA, the separation of proteins by gel electrophoresis, preparation of gels for radioactive exposure, and relative quantification of glutamylation activity. This procedure is useful for the identification of substrates for glutamylation, characterization of substrate and glutamylase activities due to mutations, and identification of proteins with glutamylation activity. Some studies have assayed glutamylation with the use of [3H] glutamate (Regnard et al., 1998) and the use of the GT335 antibody (Wolff et al., 1992). However, the use of [U-14C] glutamate requires a shorter radioactive exposure time with no dependence on antibody specificity.

10.
Bio Protoc ; 10(21): e3811, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659464

RESUMO

Glutamylation is a posttranslational modification where the amino group of a free glutamate amino acid is conjugated to the carboxyl group of a glutamate side chain within a target protein. SidJ is a Legionella kinase-like protein that has recently been identified to perform protein polyglutamylation of the Legionella SdeA Phosphoribosyl-Ubiquitin (PR-Ub) ligase to inhibit SdeA's activity. The attachment of multiple glutamate amino acids to the catalytic glutamate residue of SdeA by SidJ inhibits SdeA's modification of ubiquitin (Ub) and ligation activity. In this protocol, we will discuss a SidJ non-radioactive, in vitro glutamylation assay using its substrate SdeA. This will also include a second reaction to assay the inhibition of SdeA by using both modification of free Ub and ligation of ADP-ribosylated Ubiquitin (ADPR-Ub) to SdeA's substrate Rab33b. Prior to the identification and publication of SidJ's activity, no SdeA inhibition assays existed. Our group and others have demonstrated various methods to display inhibition of SdeA's activity. The alternatives include measurement of ADP-ribosylation of Ub using radioactive NAD, NAD hydrolysis, and Western blot analysis of HA-Ub ligation by SdeA. This protocol will describe the inhibition of both ubiquitin modification and the PR-Ub ligation by SdeA using inexpensive standard gels and Coomassie staining.

11.
Trends Microbiol ; 27(12): 967-969, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31624006

RESUMO

Legionella pneumophila encodes a family of phosphoribosyl ubiquitination ligases (SidE) essential for the bacterium to establish successful infection. Four independent studies now show that the SidE family of ubiquitin ligases are regulated by a novel mechanism of glutamylation via a pseudokinase-like Legionella effector, SidJ, in an ATP- and calmodulin-dependent manner.


Assuntos
Legionella , Ubiquitina , Proteínas de Bactérias , Ligases , Proteínas de Membrana
12.
Methods Enzymol ; 618: 343-355, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30850059

RESUMO

Intracellular pathogens like Legionella pneumophila hijack the host ubiquitination network in order to create a facultative niche for their survival by means of effector molecules secreted into the host cell. Some of these effectors function as ubiquitin ligases or deubiquitinases, among other types of enzymes. Deubiquitinating enzymes (DUBs) remove ubiquitin or ubiquitin-like modifiers from conjugated substrates to regulate various cellular processes. Members of the SidE effector family from the L. pneumophila pathogen harbor multiple functional domains that possess discrete biochemical activities impinging on host ubiquitin signaling. At the N-terminal end of these ~1500-residue proteins is a ~200-residue conserved DUB domain capable of recognizing both ubiquitin and the NEDD8 Ubl. SdeA, a member of the SidE family, plays an important role in intracellular bacterial replication. Downstream domains in this protein also catalyze substrate ubiquitination via a phosphoribosyl linkage. Several mammalian Rab proteins (Rab1, Rab30, and Rab33) have been shown to be targeted. The novel mechanism is independent of the classical E1 and E2 ubiquitin ligation machinery and does not require ATP. The N-terminal DUB domain, which does not appear to affect this ubiquitination activity, but it catalyzes cleavage of three different types of polyubiquitination chains (K11, K48, and K63) commonly found in host cells. This chapter describes methods, including purification of recombinant SdeA (full-length and DUB domain alone), and enzymatic assays that have been utilized to characterize the deubiquitination activity of SdeA.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Legionella pneumophila/metabolismo , Proteínas de Membrana/metabolismo , Animais , Proteínas de Bactérias , Enzimas Desubiquitinantes/química , Ensaios Enzimáticos/métodos , Humanos , Legionella pneumophila/química , Doença dos Legionários/metabolismo , Doença dos Legionários/microbiologia , Proteínas de Membrana/química , Modelos Moleculares , Domínios Proteicos , Ubiquitina/metabolismo , Ubiquitinação
13.
Elife ; 82019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31682223

RESUMO

Pseudokinases are considered to be the inactive counterparts of conventional protein kinases and comprise approximately 10% of the human and mouse kinomes. Here, we report the crystal structure of the Legionella pneumophila effector protein, SidJ, in complex with the eukaryotic Ca2+-binding regulator, calmodulin (CaM). The structure reveals that SidJ contains a protein kinase-like fold domain, which retains a majority of the characteristic kinase catalytic motifs. However, SidJ fails to demonstrate kinase activity. Instead, mass spectrometry and in vitro biochemical analyses demonstrate that SidJ modifies another Legionella effector SdeA, an unconventional phosphoribosyl ubiquitin ligase, by adding glutamate molecules to a specific residue of SdeA in a CaM-dependent manner. Furthermore, we show that SidJ-mediated polyglutamylation suppresses the ADP-ribosylation activity. Our work further implies that some pseudokinases may possess ATP-dependent activities other than conventional phosphorylation.


Assuntos
Proteínas de Bactérias/metabolismo , Calmodulina/metabolismo , Glutamatos/metabolismo , Legionella pneumophila/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Virulência/metabolismo , Proteínas de Bactérias/química , Calmodulina/química , Cristalografia por Raios X , Humanos , Espectrometria de Massas , Conformação Proteica , Fatores de Virulência/química
14.
J Mol Biol ; 430(17): 2843-2856, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29870726

RESUMO

Conventional ubiquitylation occurs through an ATP-dependent three-enzyme cascade (E1, E2, and E3) that mediates the covalent conjugation of the C-terminus of ubiquitin to a lysine on the substrate. SdeA, which belongs to the SidE effector family of Legionella pneumophila, can transfer ubiquitin to endoplasmic reticulum-associated Rab-family GTPases in a manner independent of E1 and E2 enzymes. The novel ubiquitin-modifying enzyme SdeA utilizes NAD+ as a cofactor to attach ubiquitin to a serine residue of the substrate. Here, to elucidate the coupled enzymatic reaction of NAD+ hydrolysis and ADP-ribosylation of ubiquitin in SdeA, we characterized the mono-ADP-ribosyltransferase domain of SdeA and show that it consists of two sub-domains termed mART-N and mART-C. The crystal structure of the mART-C domain of SdeA was also determined in free form and in complex with NAD+ at high resolution. Furthermore, the spatial orientations of the N-terminal deubiquitylase, phosphodiesterase, mono-ADP-ribosyltransferase, and C-terminal coiled-coil domains within the 180-kDa full-length SdeA were determined. These results provide insight into the unusual ubiquitylation mechanism of SdeA and expand our knowledge on the structure-function of mono-ADP-ribosyltransferases.


Assuntos
Legionella pneumophila/enzimologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Proteínas de Bactérias , Cristalografia por Raios X , Proteínas de Membrana/genética , Modelos Moleculares , Mutação , Conformação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA