Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Fish Physiol Biochem ; 50(1): 239-258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37656302

RESUMO

Pollution and climate change pose significant threats to aquatic ecosystems, with adverse impacts on aquatic animals, including fish. Climate change increases the toxicity of metal in aquatic ecosystems. To understand the severity of metal pollution and climate change, an experiment was conducted to delineate the mitigation potential of selenium (Se) and selenium nanoparticles (Se-NPs) against lead (Pb) and high temperature stress in Pangasianodon hypophthalmus. For the experiment, five isonitrogenous and isocaloric diets were prepared, varying in selenium supplementation as Se at 0, 1, and 2 mg kg-1 diet, and Se-NPs at 1 and 2 mg kg-1 diet. The fish in stressor groups were exposed to Pb (1/20th of LC50 concentration, 4 ppm) and high temperature (34 °C) throughout the experiment. The results demonstrated that dietary supplementation of Se at 1 and 2 mg kg-1 diet, as well as Se-NPs at 1 mg kg-1 diet, significantly reduced (p < 0.01) the levels of lactate dehydrogenase and malate dehydrogenase in both liver and muscle tissues. Additionally, the levels of alanine aminotransferase and aspartate aminotransferase in both gill and liver tissues were significantly decreased (p < 0.01) with the inclusion of Se and Se-NPs in the diets. Furthermore, the enzymes glucose-6-phosphate dehydrogenase in gill and liver tissues, fructose 1,6-bisphosphatase in liver and muscle tissues, and acid phosphatase in liver tissue were remarkably reduced (p < 0.01) due to the supplementation of Se and Se-NPs. Moreover, dietary supplementation of Se and Se-NPs significantly enhanced (p < 0.01) the activity of pyruvate kinase, glucokinase, hexokinase, alkaline phosphatase, ATPase, protease, amylase, lipase, and RNA/DNA ratio in the fish. Histopathological examination of gill and liver tissues also indicated that Se and Se-NPs protected against structural damage caused by lead and high-temperature stress. Moreover, the study examined the bioaccumulation of selenium and lead in muscle, water, and diets. The aim of the study revealed that Se and Se-NPs effectively protected the fish from lead toxicity and high-temperature stress, while also improving the function of cellular metabolic enzymes in P. hypophthalmus.


Assuntos
Peixes-Gato , Nanopartículas , Selênio , Animais , Chumbo/metabolismo , Ecossistema , Antioxidantes/metabolismo , Peixes-Gato/fisiologia
2.
BMC Microbiol ; 23(1): 224, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587432

RESUMO

BACKGROUND: Bimetallic nanoparticles (BNPs) has drawn a lot of attention especially during the last couple of decades. A bimetallic nanoparticle stands for a combination of two different metals that exhibit several new and improved physicochemical properties. Therefore, the green synthesis and design of bimetallic nanoparticles is a field worth exploring. METHODS: In this study, we present a green synthesis of silver nanoparticles (Ag NPs), selenium (Se) NPs, and bimetallic Ag-Se NPs using Gamma irradiation and utilizing a bacterial filtrate of Bacillus paramycoides. Different Techniques such as UV-Vis., XRD, DLS, SEM, EDX, and HR-TEM, were employed for identifying the synthesized NPs. The antimicrobial and antibiofilm activities of both the Ag/Se monometallic and bimetallic Ag-Se NPs were evaluated against some standard microbial strains including, Aspergillus brasiliensis ATCC16404, Candida albicans ATCC10231, Alternaria alternate EUM108, Fusarium oxysporum EUM37, Escherichia coli ATCC11229, Bacillus cereus ATCC15442, Klebsiella pneumoniae ATCC13883, Bacillus subtilis ATCC15442, and Pseudomonas aeruginosa ATCC6538 as a model tested pathogenic microbes. The individual free radical scavenging potentials of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs were determined using the DPPH radical scavenging assay. The degradation of methylene blue (MB) dye in the presence of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs was used to assess their photocatalytic behavior. RESULTS: According to the UV-Vis. spectrophotometer, the dose of 20.0 kGy that results in Ag NPs with the highest O.D. = 3.19 at 390 nm is the most effective dose. In a similar vein, the optimal dose for the synthesis of Se NPs was 15.0 kGy dose with O.D. = 1.74 at 460 nm. With a high O.D. of 2.79 at 395 nm, the most potent dose for the formation of bimetallic Ag-Se NPs is 15.0 kGy. The recorded MIC-values for Ag-Se NPs were 62.5 µg mL- 1, and the data clearly demonstrated that C. albicans was the organism that was most susceptible to the three types of NPs. The MIC value was 125 µg mL- 1 for both Ag NPs and Se NPs. In antibiofilm assay, 5 µg mL- 1 Ag-Se NPs inhibited C. albicans with a percentage of 90.88%, E. coli with a percentage of 90.70%, and S. aureus with a percentage of 90.62%. The synthesized NPs can be arranged as follows in decreasing order of antioxidant capacity as an antioxidant result: Ag-Se NPs > Se NPs > Ag NPs. The MB dye degradation in the presence of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs was confirmed by the decrease in the measured absorbance (at 664 nm) after 20 min of exposure to sunlight. CONCLUSION: Our study provides insight towards the synthesis of bimetallic NPs through green methodologies, to develop synergistic combinatorial antimicrobials with possible applications in the treatment of infectious diseases caused by clinically and industrial relevant drug-resistant strains.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Selênio , Selênio/farmacologia , Antioxidantes/farmacologia , Prata/farmacologia , Escherichia coli , Raios gama , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Azul de Metileno , Candida albicans , Biofilmes
3.
Ecotoxicol Environ Saf ; 225: 112738, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34481352

RESUMO

Arsenic is a significant food safety and environmental concern due to its mutagenic and carcinogenic effect on living organism. Soybean (Glycine max [L.] Merrill) is a global staple crop grown intensively in arsenic-contaminated regions of the world (e.g., Southern Province of China). Therefore, the objective of this study was to investigate whether Se-NPs and/or ZnO-NPs could be used as an eco-friendly and efficient amendment to reduce arsenic uptake and toxicity in soybean. Ten-days-old seedling, grown in vermiculite, were transferred to hydroponic media and further grown till V2 growth stage appeared. AsV (25 µM Na2HAsO4) stressed plants were treated with ZnONP (25 µM ZnO) and SeNP (25 µM Se) separately and in combination, which were grown for another 10 d. The result demonstrated that arsenic-treated soybean plants displayed a reduction in photosynthetic efficiency, increased proline and glycine betaine accumulation in tissues, and altered antioxidant activity compared to an untreated control. The application of zinc oxide and selenium nanoparticles, both independently and in tandem, reduced arsenic stress in root and shoot tissues and rescued plant health. This was reflected through increased levels of reduced glutathione content, ascorbic acid, and various photosynthesis- and antioxidant-relevant enzymes. In addition, nanoparticle-treated soybean plants displayed higher expression of defense- and detoxification-related genes compared to controls. Cellular toxicants (i.e., oxidized glutathione, reactive oxygen species, and malondialdehyde) were reduced upon nanoparticle treatment. These data collectively suggest that selenium and zinc oxide nanoparticles may be a solution to ameliorate arsenic toxicity in agricultural soils and crop plants.


Assuntos
Nanopartículas , Óxido de Zinco , Antioxidantes , Nanopartículas/toxicidade , Fotossíntese , Raízes de Plantas , Plântula , Glycine max , Óxido de Zinco/toxicidade
4.
Trop Anim Health Prod ; 53(2): 324, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33991248

RESUMO

Nanotechnology, an emerging and promising technology, has been implicated to revolutionize the poultry industry. The main aspect of nanotechnology was to modify or alter the particle size into nanometers and thereby alter the physical as well as chemical features of the particular molecules. Selenium (Se), an essential trace element, can play an immense role in the maintenance of diverse physiological functions, body metabolism and cellular homeostasis, and the performance of poultry. Selenium nanoparticles (Se-NPs) are of growing importance due to its nutrients digestibility, medicinal therapy, targeted drug delivery system, and production of vaccines. Se-nanoparticles are having importance due to its high bioavailability and digestive efficiency. Se-NPs have been implicated to increase relative weights of immune-related organs (burse and thymus) to enhance immunity and thereby modulate egg production as well as the reproductive performance of birds. The present review is highlighted on the significant role of nano-selenium on reproductive performance and immunocompetence in poultry as comparative advantages over conventional sources of Se in poultry diets.


Assuntos
Selênio , Ração Animal/análise , Animais , Imunocompetência , Aves Domésticas , Reprodução
5.
J Environ Sci (China) ; 103: 336-346, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33743915

RESUMO

Selenium nanoparticles (Se NPs) are less toxic and more biocompatible than selenite or selenate. However, studies involving spraying with Se NPs for reducing accumulation of cadmium (Cd) and lead (Pb) in rice grains have been rarely reported as yet. Herein, indica rice seedlings cultivated in Cd+Pb-spiked paddy soils (denoted as positive control) were sprayed with Se NPs sols for four times from tillering to booting stage. Compared to positive control, 50-100 µmol/L Se NPs downregulated Cd transporters-related genes such as OsLCT1, OsHMA2 and OsCCX2 in leaves and OsLCT1, OsPCR1 and OsCCX2 genes in node I at filling stage. Meanwhile, Se-binding protein 1 was distinctly elevated, involving the repression of Cd and Pb transportation to rice grains. Se NPs also differentially improved RuBP carboxylase and chlorophylls especially some key genes and proteins involving photosynthetic system. Besides, 25-50 µmol/L Se NPs diminished reactive oxygen species overproduction from NADPH oxidases whereas boosted glutathione peroxidase, reducing protein carbonylation in rice seedlings. However, the antioxidant isozymes and oxidatively modified proteins were slightly rebounded at 100 µmol/L. Se contents were noticeably elevated and confirmed to exist as selenomethionine in the rice grains following all the treatments by Se NPs. Thus, the optimal dosage of Se NPs for foliar application is 50 µmol/L, which significantly decreased Cd accumulation, improved photosynthesis and Se enrichment whereas caused no distinct reduction of Pb in the grains. Thus, an appropriate dosage of Se NPs can be conducted to decrease Cd accumulation, improve photosynthesis, and organic Se contents in rice grains.


Assuntos
Oryza , Selênio , Poluentes do Solo , Cádmio/análise , Chumbo , Fotossíntese , Solo , Poluentes do Solo/análise
6.
Sci Technol Adv Mater ; 21(1): 505-514, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32939175

RESUMO

Green synthesis of selenium nanoparticles (Se NPs) was performed by mixing Hibiscus sabdariffa (roselle plant) leaf extract with the solution of selenious acid (H2SeO3) under continuous stirring conditions resulting the roselle plant secondary metabolites conjugated Se NPs. The existence of functional groups of roselle plant secondary metabolites on the surface of prepared Se NPs was confirmed by Fourier transform infrared spectroscopy (FTIR). The formation of crystalline nanoparticles with anisotropic shape was confirmed by transmission electron microscopy (TEM) images. Furthermore, we also studied anti-oxidative and protective effects of Se NPs in streptozotocin (STZ) induced diabetes rats. These STZ induced diabetic rats were daily exposed to Se NPs or/and insulin treatment and the effect of Se NPs on the factors correlated to oxidative damage in the rat testes were evaluated. The biochemical studies showed that the Se NPs are capable to enhance the serum testosterone reduction caused due to STZ induced diabetes. In addition, Se NPs can significantly reduce the oxidative stress indicators of the testicular tissue such as nitric oxide and lipid peroxidation. However, the treatment of Se NPs on the STZ induced diabetic rats increased the activities of antioxidant enzyme as well as the glutathione content in testicular tissues. Furthermore, microscopic studies revealed that the Se NPs are capable of preventing the histological damage in the testes of STZ induced diabetic rats. Altogether, these results explained the possible effects of Se NPs in attenuating oxidative damage induced by diabetes, especially in the testicular tissue.

7.
Anal Bioanal Chem ; 408(30): 8771-8778, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26873211

RESUMO

It is very important to be able to accurately and rapidly measure the cholesterol level in the human body, as cholesterol is associated with various diseases, such as Alzheimer's disease. In this work, a novel method of detecting cholesterol using chemiluminescence (CL) based on a newly prepared semiconductor catalyst, Cu2-x Se nanoparticles (Cu2-x Se NPs), was developed. It was found that the Cu2-x Se NPs strongly enhanced the CL signal by producing a large number of reactive oxygen species (ROS) in the luminol-Cu2-x Se NPs system. Based on the UV-vis-NIR absorption spectra, zeta potential, CL spectrum, and an investigation of the ROS, a possible mechanism for the CL was proposed. This CL-based method was successfully applied to determine cholesterol. It was found that the enhanced CL was proportional to the concentration of cholesterol over the range of 82 nM to 1.96 µM with a detection limit of 0.062 nM, and that added cholesterol was successfully detected in human serum with a mean recovery of 97 %.


Assuntos
Bioensaio , Colesterol/sangue , Medições Luminescentes/métodos , Luminol/química , Compostos de Selênio/química , Acetatos/química , Catálise , Humanos , Limite de Detecção , Pontos Quânticos/química , Pontos Quânticos/ultraestrutura , Espécies Reativas de Oxigênio/química
8.
J Trace Elem Med Biol ; 84: 127443, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579498

RESUMO

The following investigation was carried out to determine the effects of Selenium nanoparticles (Se NPs) on the growth rates, nutrient digestibility, and hematology of Cirrhinus mrigala fingerlings fed sunflower meal as basal diet. The experiment included seven test diets with varying Se levels (0, 0.5, 1, 1.5, 2, 2.5, and 3 mg/kg) based on Se NPs supplementation. Chromic oxide, an inert maker, was also added. Fingerlings were fed at a rate of 5% of their body weight. The test meal of 1 mg/kg Se NPs resulted in the highest weight gain (12.31 g) and the lowest feed conversion ratio (1.58). Best hematological indices (RBCs 2.84 106 mm-3, WBCs 7.79 103 mm-3, PLT 66, Hb 8.5 g/100 ml, PCV 25% and MCV 190 fl) and maximum nutrient absorption (crude protein 72%, ether extract 73% and gross energy 67%) were also observed in the case of 1 mg/kg supplementation of Se NPs. Hematology studies indicated that when fish were fed 0.5 mg/kg Se NPs, their levels began to rise. Maximum results were achieved with feed containing 1 mg/kg of Se NPs, but when the concentration increased above 1 mg/kg, the values began to decline. Instead, nutrient digestibility began to increase when the concentration of Se NPs increased to 1 mg/kg and abruptly started to decline with a further increase in Se NPs. The results demonstrated that a sunflower meal-based diet supplemented with Se NPs (1 mg/kg) increased the growth performance, nutritional digestibility, and hematology of C. mrigala fingerlings.


Assuntos
Suplementos Nutricionais , Nanopartículas , Selênio , Animais , Selênio/farmacologia , Selênio/administração & dosagem , Nanopartículas/química , Nanopartículas/administração & dosagem , Digestão/efeitos dos fármacos , Nutrientes/metabolismo , Ração Animal/análise
9.
Mol Neurobiol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837103

RESUMO

Oxidative stress and the accumulation of misfolded proteins in the brain are the main causes of Parkinson's disease (PD). Several nanoparticles have been used as therapeutics for PD. Despite their therapeutic potential, these nanoparticles induce multiple stresses upon entry. Selenium (Se), an essential nutrient in the human body, helps in DNA formation, stress control, and cell protection from damage and infections. It can also regulate thyroid hormone metabolism, reduce brain damage, boost immunity, and promote reproductive health. Selenium nanoparticles (Se-NPs), a bioactive substance, have been employed as treatments in several disciplines, particularly as antioxidants. Se-NP, whether functionalized or not, can protect mitochondria by enhancing levels of reactive oxygen species (ROS) scavenging enzymes in the brain. They can also promote dopamine synthesis. By inhibiting the aggregation of tau, α-synuclein, and/or Aß, they can reduce the cellular toxicities. The ability of the blood-brain barrier to absorb Se-NPs which maintain a healthy microenvironment is essential for brain homeostasis. This review focuses on stress-induced neurodegeneration and its critical control using Se-NP. Due to its ability to inhibit cellular stress and the pathophysiologies of PD, Se-NP is a promising neuroprotector with its anti-inflammatory, non-toxic, and antimicrobial properties.

10.
ACS Nano ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952034

RESUMO

Nanotechnology has demonstrated significant potential to improve agricultural production and increase crop tolerance to abiotic stress including exposure to heavy metals. The present study investigated the mechanisms by which aloe vera extract gel-biosynthesized (AVGE) selenium nanoparticles (Se NPs) alleviated cadmium (Cd)-induced toxicity to rice (Oryza sativa L.). AVGE Se NPs, chemically synthesized bare Se NPs, and NaSeO3 as an ionic control were applied to Cd-stressed rice seedlings via root exposure in both hydroponic and soil systems. Upon exposure to AVGE Se NPs at 15 mg Se/L, the fresh root biomass was significantly increased by 100.7% and 19.5% as compared to Cd control and conventional bare Se NPs. Transcriptional analyses highlighted that AVGE Se NPs activated stress signaling and defense related pathways, including glutathione metabolism, phenylpropanoid biosynthesis and plant hormone signal transduction. Specifically, exposure to AVGE Se NPs upregulated the expression of genes associated with the gibberellic acid (GA) biosynthesis by and 4.79- and 3.29-fold as compared to the Cd-alone treatment and the untreated control, respectively. Importantly, AVGE Se NPs restored the composition of the endophyte community and recruit of beneficial species under Cd exposure; the relative abundance of Azospirillum was significantly increased in roots, shoots, and the rhizosphere soil by 0.73-, 4.58- and 0.37-fold, respectively, relative to the Cd-alone treatment. Collectively, these findings highlight the significant potential of AVGE Se NPs to enhance plant growth and to minimize the Cd-induced toxicity in rice and provide a promising nanoenabled strategy to enhance food safety upon crop cultivation in contaminated agricultural soils.

11.
Bioorg Med Chem Lett ; 23(23): 6296-303, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24140445

RESUMO

Selenium nanoparticles (Se NPs) have been served as promising materials for biomedical applications, especially for cancer treatment. The anti-cancer effects of Se NPs against cancer cells have been widely studied in recent years, but whether Se NPs can induce the changes of cell membrane bio-mechanical properties in cancer cells still remain unexplored. In this Letter, we prepared Se NPs for investigating the intracellular localization of Se NPs in MCF-7 cells and determined the effects of Se NPs on apoptosis and necrosis in MCF-7 cells. Especially, we reported for the first time about the effects of Se NPs on the bio-mechanical properties of cancer cells and found that Se NPs could remarkably decrease the adhesion force and Young's modulus of MCF-7 cells. To further understand the potential mechanisms about how Se NPs affect the bio-mechanical properties of MCF-7 cells, we also investigated the expression of CD44 molecules, the structure and the amounts of F-actin. The results indicated that the decreased adhesion force between AFM tip and cell membrane was partially due to the changes of membrane molecules induced by Se NPs, such as the down-regulation of trans-membrane CD44 molecules. Additionally, the decrease of Young's modulus of MCF-7 cells was due to the dis-organization and down-regulation of F-actin induced by Se NPs. These results collectively suggested that cell membrane was of vital importance in Se NPs induced toxicity in cancer cells, which could be served as a potential target for cancer treatment by Se NPs.


Assuntos
Actinas/metabolismo , Nanopartículas/química , Nanopartículas/uso terapêutico , Selênio/química , Selênio/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Humanos , Receptores de Hialuronatos/biossíntese , Lisossomos/química , Lisossomos/metabolismo , Células MCF-7 , Microscopia de Força Atômica
12.
Curr Med Mycol ; 9(4): 17-23, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38983615

RESUMO

Background and Purpose: Fusarium species are commonly resistant to many antifungal drugs. The limited therapeutic options available have led to a surge of research efforts aimed at discovering novel antifungal compounds in recent decades. This study aimed to assess the in vitro antifungal activity of plant-based biosynthesized selenium nanoparticles (Se NPs) and six comparators against a set of clinical Fusarium strains. Materials and Methods: In vitro antifungal activity of Se NPs synthesized using plant extracts of Allium paradoxum, Crocus caspius, Pistacia vera L. hull, Vicia faba L. hull and Heracleum persicum, as well as six common antifungal drugs, namely voriconazole, itraconazole, amphotericin B, posaconazole, natamycin, and caspofungin were evaluated against 94 clinical Fusarium strains using broth microdilution according to Clinical and Laboratory Standards Institute guideline. Results: The obtained results were intriguing since all five types of biosynthesized Se NPs demonstrated significantly higher antifungal activity, compared to antifungal drugs. It was found that Se NPs synthesized by V. faba L. hull extract (0.03 µg/ml) had the lowest geometric mean minimum inhibitory concentration value followed by Se NPs synthesized by P. vera L. hull extract (0.25 µg/ml), A. paradoxum extract (0.39 µg/ml), C. caspius extract (0.55 µg/ml), and H. persicum extract (0.9 µg/ml). Conclusion: Plant-based Se NPs demonstrated supreme antifungal activity and could be considered promising antifungal agents for Fusarium infections. However, tests, such as toxicity and in vivo tests are needed before the product can be used in clinical settings.

13.
Pak J Biol Sci ; 26(6): 334-346, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37902047

RESUMO

&lt;b&gt;Background and Objective:&lt;/b&gt; The negative effects of preservatives, such as sodium benzoate, have received increasing global attention. The objective of the study was to investigate the potential protective effects of nano-selenium (nano-Se) on thyroid functions, oxidative stress and inflammatory cytokine responses of albino rats. &lt;b&gt;Materials and Methods:&lt;/b&gt; Thirty-five male rats were divided into five groups, 7 rats in each: GI: A control group, GII: Corn oil, GIII: Nano-selenium, GIV: Sodium benzoate, GV: Selenium nanoparticles followed with sodium benzoate. At the end of study, sera were separated from all rats for estimation of MDA, GSH, GSH-PX, glucose, interleukin-1ß, TSH, T3, FT3, T4 and FT4. All data were statistically analyzed using Analysis of Variance (ANOVA). &lt;b&gt;Results:&lt;/b&gt; Sodium benzoate treatment showed opposite effects as it decreased levels of T3, FT3, F4, FT4, GSH and GSH-PX. On the contrary, it increased serum levels of TSH, MDA, NO, glucose and IL-1β when compared to the control group. Whereas, nano-selenium promoted a significant increase in levels of thyroid hormones T3, T4 and FT4, upgrading GSH and GSH-PX. While it reduced TSH, MDA, NO, glucose and IL-1β levels when compared to the sodium benzoate group. &lt;b&gt;Conclusion:&lt;/b&gt; Nano-selenium treatment as a protector showed the ability to reduce lipid peroxidation and restore glutathione peroxidase activity, thus, selenium complex at nano-level can reduce oxidative stress and damage of thyroid hormones caused by sodium benzoate administration.


Assuntos
Selênio , Ratos , Masculino , Animais , Selênio/farmacologia , Benzoato de Sódio/farmacologia , Glândula Tireoide/metabolismo , Estudos Prospectivos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Hormônios Tireóideos/farmacologia , Tireotropina/farmacologia , Glucose
14.
ACS Nano ; 17(14): 13672-13684, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37440420

RESUMO

The use of nanotechnology to suppress crop diseases has attracted significant attention in agriculture. The present study investigated the antifungal mechanism by which aloe vera extract gel-biosynthesized (AVGE) selenium nanoparticles (Se NPs) suppressed Fusarium-induced wilt disease in lettuce (Lactuca sativa). AVGE Se NPs were synthesized by utilizing sodium selenite as a Se source and AVGE as a biocompatible capping and reducing agent. Over 21 d, 2.75% of total AVGE Se NPs was dissolved into Se ions, which was more than 8-fold greater than that of bare Se NPs (0.34%). Upon exposure to soil applied AVGE Se NPs at 50 mg/kg, fresh shoot biomass was significantly increased by 61.6 and 27.8% over the infected control and bare Se NPs, respectively. As compared to the infected control, the shoot levels of citrate, isocitrate, succinate, malate, and 2-oxo-glutarate were significantly upregulated by 0.5-3-fold as affected by both Se NPs. In addition, AVGE Se NPs significantly increased the shoot level of khelmarin D, a type of coumarin, by 4.40- and 0.71-fold over infected controls and bare Se NPs, respectively. Additionally, AVGE Se NPs showed greater upregulation of jasmonic acid and downregulation of abscisic acid content relative to bare Se NPs in diseased shoots. Moreover, the diversity of bacterial endophytes was significantly increased by AVGE Se NPs, with the values of Shannon index 40.2 and 9.16% greater over the infected control and bare Se NPs. Collectively, these findings highlight the significant potential of AVGE Se NPs as an effective and biocompatible strategy for nanoenabled sustainable crop protection.


Assuntos
Aloe , Nanopartículas , Selênio , Selênio/farmacologia , Lactuca/metabolismo , Aloe/metabolismo , Endófitos/metabolismo , Resistência à Doença
15.
Biomed Mater ; 18(3)2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36917859

RESUMO

Cu2-xSe nanoparticles (Cu2-xSe NPs) as a new therapeutic drug platform is widely used in disease treatment due to their strong near-infrared optical absorption. In recent years, with their continuous expansion of applications in different fields, their own biological effects have received increasing attention. However, little is known about the effect of Cu2-xSe NPs on cancer cell. In this research, we found that Cu2-xSe NPs inhibited proliferation of HepG2 cells (IC50: 15.91µM) and SMMC-7721 cells (IC50: 43.15µM) and they mainly induced cell cycle arrest at the G2/M phase. Moreover, Cu2-xSe NPs inhibited HepG2 and SMMC-7721 cell migration and lamellopodia formation. Further studies indicated that Cu2-xSe NPs impaired mitochondrial respiration by inhibiting electron transport chain complex activity, thus reducing adenosine triphosphate levels. The insufficient energy supply subsequently impaired actin cytoskeleton assembly, ultimately inhibiting HepG2 and SMMC-7721 cell proliferation and migration. These findings suggest that Cu2-xSe NPs may have potentially antitumor activity, which might provide new insights of NPs into specific cancer treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/uso terapêutico , Células Hep G2 , Proliferação de Células
16.
Environ Pollut ; 292(Pt B): 118473, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758366

RESUMO

Melatonin (MT) and selenium (Se) application known to decrease heavy metal uptake and toxicity in plants. By mixing the Se in MT medium a new complex MT-Se nanoparticles (MT-Se NPs) was synthesized and we investigated the role of MT-Se NPs on B. napus growth and tolerance against As stress. The MT-Se particles significantly enhanced the plant growth and other associated physiological attributes under As stress. The As treatment at 80 µM was more phytotoxic, however MT-Se NPs application resulted in a substantial increase in leaf chlorophyll fluorescence, biomass accumulation, and decreased ROS relative to As stressed plants. The use of MT-Se NPs to As stressed plants reduced photosynthetic inhibition and oxidative stress and attenuated the increase in MDA and H2O2 contents. The application of MT-Se NPs also boosted the antioxidant enzymes activities such as SOD, POD and CAT as well as the APX, GR and GSH activates under As stress. The results also showed MT-Se NPs treatments alleviated the growth inhibition induced by As and reduced the accumulation of As in leaves and roots of B. napus seedlings. Moreover, treatment with MT-Se NPs improved the plant growth more successfully than treatment of MT and Se alone. This study explored the mechanism of melatonin and selenium efficiency in the composition can be jointly encouraged to exert synergistic effects and boost plant enzymatic activities.


Assuntos
Arsênio , Brassica napus , Melatonina , Nanopartículas , Selênio , Arsênio/toxicidade , Peróxido de Hidrogênio
17.
Anticancer Agents Med Chem ; 22(15): 2715-2725, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35168523

RESUMO

BACKGROUND: Selenium nanoparticles (SeNPs) have gained a place in the biomedical field; they serve as chemotherapeutic agents for targeted drug delivery due to their capacity to exert distinct mechanisms of action on cancer and normal cells. The principle behind these mechanisms is the generation of reactive oxygen species (ROS), which accelerates apoptosis via the dysfunction of various pathways. SeNPs, when used in higher concentrations, induce toxicity; however, conjugation and surface functionalization are some techniques available to ameliorate their toxic nature as well as enhance their anticancer activity. OBJECTIVES: The primary goal of this analysis is to provide a thorough and systematic investigation into the use of various SeNPs in localized drug targeting for cancer therapy. This has been achieved by citing examples of numerous SeNPs and their use as a drug targeting agent for cancer therapy. METHODS: All relevant data and information about the various SeNPs for drug targeting in cancer therapy were gathered from various databases, including Science Direct, PubMed, Taylor and Francis imprints, American Chemical Society, Springer, Royal Society of Chemistry, and Google Scholar. RESULTS: SeNPs are explored due to their better biopharmaceutical properties and cytostatic behavior. Se, as an essential component of the enzyme glutathione peroxidase (GPx) and other seleno-chemical substances, might boost chemotherapeutic efficacy and protect tissues from cellular damage caused by ROS. SeNPs have the potential to set the stage for developing new strategies to treat malignancy. CONCLUSION: This review extensively analyzed the anticancer efficacy and functionalization strategies of SeNPs in drug delivery to cancer cells. In addition, this review highlights the mechanism of action of drug-loaded SeNPs to suppress the proliferation of cancer cells in different cell lines.


Assuntos
Nanopartículas , Neoplasias , Selênio , Apoptose , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Selênio/química , Selênio/farmacologia
18.
J Funct Biomater ; 13(3)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36135592

RESUMO

The aqueous extract of Portulaca oleracea was used as a biocatalyst for the reduction of Na2SeO3 to form Se-NPs that appeared red in color and showed maximum surface plasmon resonance at a wavelength of 266 nm, indicating the successful Phyto-fabrication of Se-NPs. A FT-IR chart clarified the role of plant metabolites such as proteins, carbohydrates, and amino acids in capping and stabilizing Se-NPs. TEM, SAED, and XRD analyses indicated the formation of spherical, well-arranged, and crystalline Se-NPs with sizes in the range of 2-22 nm. SEM-EDX mapping showed the maximum peaks of Se at 1.4, 11.3, and 12.4 KeV, with weight and atomic percentages of 36.49 and 30.39%, respectively. A zeta potential of -43.8 mV also indicated the high stability of the synthesized Se-NPs. The Phyto-synthesized Se-NPs showed varied biological activities in a dose-dependent manner, including promising activity against pathogenic bacteria and Candida species with varied MIC values in the range of 12.5-50 µg·mL-1. Moreover, the Se-NPs showed antiviral activity toward HAV and Cox-B4, with percentages of 70.26 and 62.58%, respectively. Interestingly, Se-NPs showed a target orientation to cancer cell lines (HepG2) with low IC50 concentration at 70.79 ± 2.2 µg·mL-1 compared to normal cell lines (WI-38) with IC50 at165.5 ± 5.4 µg·mL-1. Moreover, the as-formed Se-NPs showed high activity against various instar larvae I, II, III, and IV of Culex pipiens, with the highest mortality percentages of 89 ± 3.1, 73 ± 1.2, 68 ± 1.4, and 59 ± 1.0%, respectively, at 50 mg L-1. Thus, P. oleracea-based Se-NPs would be strong potential antimicrobial, anti-viral, anti-cancer, and anti-insect agents in the pharmaceutical and biomedical industries.

19.
Anticancer Agents Med Chem ; 21(6): 803-808, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32951582

RESUMO

BACKGROUND: Selenium Nanoparticles (Se-NPs) are known for their antioxidant and anti-inflammatory activities, which are effective in preventing oxidative damage and improving physiological processes. OBJECTIVES: This study aimed at investigating the effects of biosynthesized Se-NPs on bone marrow-derived Endothelial Progenitor Cells (bone marrow-derived EPCs) and blood-derived endothelial progenitor cells (blood-derived EPCs) isolated from rabbits in vitro. METHODS: The cultured EPCs incubated with biosynthesized Se-NPs at the concentrations of 0.19, 0.38, 0.76, 1.71, 3.42, 7.03, 14.25, 28.50, 57, 114, and 228µg/ml for 48h. After screening the proliferative potential of the Se-NPs by the MTT assay, the best concentrations were selected for Real-Time quantitative Polymerase Chain Reaction (RT-qPCR). Real-time quantification of Vascular Cell Adhesion Molecule 1 (VCAM-1), lectin-like oxidized Low-Density Lipoprotein (LDL) receptor-1 (LOX-1), endothelial Nitric Oxide Synthase (eNOS), and Monocyte Chemoattractant Protein-1 (MCP-1) gene expressions were analyzed by normalizing with Glyceraldehyde- 3-Phosphate Dehydrogenase (GAPDH) as an endogenous reference gene. RESULTS: Blood-derived EPCs and bone marrow-derived EPCs showed morphological differences before treatment in vitro. Se-NPs treated EPCs indicated a significant dose-dependent proliferative activity (p<0.01). In general, the expression levels of VCAM-1, LOX-1, and MCP-1 mRNA were significantly decreased (p<0.01), whereas that of the eNOS expression was significantly increased at the concentrations of 7.3 and 14.25µg/ml (p<0.01). Although the expressions of MCP-1, LOX-1, and eNOS mRNA were decreased at certain concentrations of Se-NPs (p<0.01 and p<0.05, respectively) in the treated bone marrow-derived EPCs, no significant differences were observed in the VCAM-1 mRNA expression levels in bone marrow-derived EPCs compared with the control group (p>0.05). CONCLUSION: This was the first report to demonstrate the effects of Se-NPs on proliferative, anti-oxidative, and anti-inflammatory activities for bone marrow-derived EPCs and blood-derived EPCs. Our findings suggested that Se-NPs could be considered as an effective agent that may ameliorate vascular problems.


Assuntos
Anti-Inflamatórios/química , Antioxidantes/química , Células Progenitoras Endoteliais/efeitos dos fármacos , Nanopartículas/química , Selênio/química , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Células Sanguíneas/citologia , Medula Óssea , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Nanomedicina , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Coelhos , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo , Selênio/farmacologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
20.
Int J Biol Macromol ; 191: 792-802, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34597692

RESUMO

Melamine and its analogues are illegally added to raise the apparent protein content in foods. The elevated concentrations of these compounds cause adverse effects in humans and animals. In this contribution, the protective effects of the synthesized starch-stabilized selenium nanoparticles (Se-NPs@starch) on melamine-induced hepato-renal toxicity have been systematically investigated. The Se-NPs@starch were characterized by X-ray photoelectron spectroscopy (XPS) analysis, energy dispersive spectroscopy (EDS) mapping analysis, TEM, and FT-IR. Starch plays a crucial role in the stabilization and dispersion of Se NPs, as noticed from the TEM and EDS investigations. Furthermore, the atomic ratio of Se distribution over the starch surface is approximately 1.67%. The current study was conducted on four groups of adult male rats, and the oral daily treatments for 28 days were as follows: group I served as control, group II received Se-NPs@starch, group III was exposed to melamine, while group IV was treated with melamine and Se-NPs@starch. The results reveal a significant alteration in the histoarchitecture of both hepatic and renal tissues induced by melamine. Furthermore, elevated liver and kidney function markers, high malondialdehyde, and increased expression levels of apoptosis-related genes besides a reduction in GSH and expression levels of antioxidant genes were observed in the melamine-exposed group. Interestingly, the administration of the Se-NPs@starch resulted in remarkable protection of rats against melamine-induced toxicity through increasing the antioxidant capacity and inhibiting oxidative damage. Collectively, this study provides affordable starch-stabilized Se-NPs with potent biological activity, making them auspicious candidates for prospective biomedical applications.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Nanopartículas/química , Selênio/química , Amido/química , Triazinas/toxicidade , Animais , Apoptose , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Nanopartículas/uso terapêutico , Estresse Oxidativo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA