Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 160, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075472

RESUMO

BACKGROUND: Salmonid species have followed markedly divergent evolutionary trajectories in their interactions with sea lice. While sea lice parasitism poses significant economic, environmental, and animal welfare challenges for Atlantic salmon (Salmo salar) aquaculture, coho salmon (Oncorhynchus kisutch) exhibit near-complete resistance to sea lice, achieved through a potent epithelial hyperplasia response leading to rapid louse detachment. The molecular mechanisms underlying these divergent responses to sea lice are unknown. RESULTS: We characterized the cellular and molecular responses of Atlantic salmon and coho salmon to sea lice using single-nuclei RNA sequencing. Juvenile fish were exposed to copepodid sea lice (Lepeophtheirus salmonis), and lice-attached pelvic fin and skin samples were collected 12 h, 24 h, 36 h, 48 h, and 60 h after exposure, along with control samples. Comparative analysis of control and treatment samples revealed an immune and wound-healing response that was common to both species, but attenuated in Atlantic salmon, potentially reflecting greater sea louse immunomodulation. Our results revealed unique but complementary roles of three layers of keratinocytes in the epithelial hyperplasia response leading to rapid sea lice rejection in coho salmon. Our results suggest that basal keratinocytes direct the expansion and mobility of intermediate and, especially, superficial keratinocytes, which eventually encapsulate the parasite. CONCLUSIONS: Our results highlight the key role of keratinocytes in coho salmon's sea lice resistance and the diverged biological response of the two salmonid host species when interacting with this parasite. This study has identified key pathways and candidate genes that could be manipulated using various biotechnological solutions to improve Atlantic salmon sea lice resistance.


Assuntos
Copépodes , Doenças dos Peixes , Hiperplasia , Queratinócitos , Oncorhynchus kisutch , Salmo salar , Animais , Copépodes/fisiologia , Doenças dos Peixes/parasitologia , Salmo salar/parasitologia , Hiperplasia/veterinária , Queratinócitos/parasitologia , Resistência à Doença/genética , Interações Hospedeiro-Parasita
2.
Fish Shellfish Immunol ; 149: 109606, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705547

RESUMO

Moritella viscosa (M. viscosa) and sea lice (Lepeophtheirus salmonis) are severe pathogens that primarily infect the skin of Atlantic salmon (Salmo salar), which cause significant economic losses in the farming industry. However, the pathogenesis and molecular mechanisms underlying the host's immune defence at the post-transcriptional level remain unclear. Alternative splicing (AS) is an evolutionarily conserved post-transcriptional mechanism that can greatly increase the richness of the transcriptome and proteome. In this study, transcriptomic data derived from skin tissues of Atlantic salmon after M. viscosa and sea lice infections were used to examine the AS profiles and their differential expression patterns. In total, we identified 33,044 AS events (involving 13,718 genes) in the control (CON) group, 35,147 AS events (involving 14,340 genes) in the M. viscosa infection (MV) group, and 30,364 AS events (involving 13,142 genes) in the sea lice infection (LC) group, respectively. Among the five types of AS identified in our study (i.e., SE, A5SS, A3SS, MXE, and RI), SE was the most prevalent type in all three groups (i.e., CON, MV, and LC groups). Decreased percent-spliced-in (PSI) levels were observed in SE events under both MV- and LC-infected conditions, suggesting that MV or LC infection elevated exon-skipping isoforms and promoted the selection of shorter transcripts in numerous DAS genes. In addition, most of the differential AS genes were found to be associated with pathways related to mRNA regulation, epithelial or muscle development, and immune response. These findings provide novel insights into the role of AS in host-pathogen interactions and represent the first comparative analysis of AS in response to bacterial and parasitic infections in fish.


Assuntos
Processamento Alternativo , Copépodes , Doenças dos Peixes , Moritella , Salmo salar , Animais , Salmo salar/imunologia , Salmo salar/genética , Copépodes/fisiologia , Doenças dos Peixes/imunologia , Moritella/imunologia , Moritella/genética , Transcriptoma , Ectoparasitoses/veterinária , Ectoparasitoses/imunologia , Ectoparasitoses/genética
3.
Dis Aquat Organ ; 157: 95-106, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38546193

RESUMO

Parasitic sea lice (Copepoda: Caligidae) colonising marine salmonid (Salmoniformes: Salmonidae) aquaculture production facilities have been implicated as a possible pressure on wild salmon and sea trout populations. This investigation uses monitoring data from the mainland west coast and Western Isles of Scotland to estimate the association of the abundance of adult female Lepeophtheirus salmonis (Krøyer) colonising farmed Atlantic salmon Salmo salar L. with the occurrence of juvenile and mobile L. salmonis on wild sea trout, anadromous S. trutta L. The associations were evaluated using generalised linear mixed models incorporating farmed adult female salmon louse abundances which are temporally lagged relative to dependent wild trout values. The pattern of lags, which is consistent with time for L. salmonis development between egg and infective stage, was evaluated using model deviances. A significant positive association is identified between adult female L. salmonis abundance on farms and juvenile L. salmonis on wild trout. This association is consistent with a causal relationship in which increases in the number of L. salmonis copepodids originating from lice colonising farmed Atlantic salmon cause an increase of L. salmonis abundance on wild sea trout.


Assuntos
Copépodes , Doenças dos Peixes , Salmo salar , Animais , Feminino , Truta , Aquicultura , Escócia/epidemiologia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia
4.
Proc Biol Sci ; 290(1991): 20221752, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695034

RESUMO

Parasite spillback from domestic animals can distort the balance between host and parasites in surrounding wildlife, with potential detrimental effects on wild populations. In aquatic environments, parasite spillback from aquaculture to wild salmon is one of the most contentious sustainability debates. In a 19 year time series of release group studies of Atlantic salmon, we demonstrated that (i) the effect of subjecting out-migrating salmon smolts to parasite treatment on marine survival has been reduced over a time, (ii) the relation between salmon lice levels in the out-migration route of the salmon and effect of treatment against the parasite is weak, but also (iii) the return rates in both treated and untreated groups of salmon are negatively correlated with salmon lice levels, and (iv) returns of wild salmon to the region are similarly negatively correlated with salmon lice levels during the out-migration year. Our study suggests that salmon lice can have a large effect on wild salmon populations that is not revealed with randomized control trials using antiparasitic drugs. This should be better accounted for when considering the impacts of farms on wild salmon populations.


Assuntos
Copépodes , Doenças dos Peixes , Parasitos , Salmo salar , Animais , Animais Selvagens , Aquicultura , Doenças dos Peixes/parasitologia
5.
Dis Aquat Organ ; 155: 165-174, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37706647

RESUMO

Sea lice are a key limitation to sustainable salmon aquaculture, and effective monitoring strategies are critical for the management of these parasites. Sentinel cages are an established means of assessing infestation pressure at fixed locations, but as smolts move through systems they will be exposed to varying lice densities. As a means of assessing infestation pressure along trajectories, we describe the development and application of towed sentinel cages (TSCs) in a Scottish sea loch containing salmonid aquaculture. Trial deployments took place over 3 yr (2016-2018), and levels of sea lice infestation were compared between methodologies. Oceanographic data was collected alongside TSCs to put the results into the environmental context that smolts and sea lice experienced during the tows. The sea lice infestation rates found from TSCs were comparable to those on contemporaneously deployed fixed sentinel cages. Thus, due to their practicability and consistency with other surveillance methods, TSCs could be used to improve the assessment of exposure risk along wild salmonid smolt migration trajectories, where these are known.


Assuntos
Copépodes , Infestações por Piolhos , Salmo salar , Animais , Infestações por Piolhos/veterinária , Aquicultura
6.
J Gen Virol ; 103(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36125358

RESUMO

The virus family Totiviridae had originally been considered to include only viruses which infected fungal and protist hosts, but since 2006 a growing number of viruses found in invertebrates and fish have been shown to cluster phylogenetically within this family. These Totiviridae-like, or toti-like, viruses do not appear to belong within any existing genera of Totiviridae, and whilst a number of new genus names have been suggested, none has yet been universally accepted. Within this growing number of toti-like viruses from animal hosts, there exists emerging viral threats particularly to aquaculture, namely Infectious myonecrosis virus in whiteleg shrimp and Piscine myocarditis virus (PMCV) in Atlantic salmon (Salmo salar). PMCV in particular continues to be an issue in salmon aquaculture as a number of questions remain unanswered about how the virus is transmitted and the route of entry into host fish. Using a phylogenetic approach, this study shows how PMCV and the other fish toti-like viruses probably have deeper origins in an arthropod host. Based on this, it is hypothesized that sea lice could be acting as a vector for PMCV, as seen with other RNA viruses in Atlantic salmon aquaculture and in the toti-like Cucurbit yellows-associated virus which is spread by the greenhouse whitefly Trialeurodes vaporariorum.


Assuntos
Doenças dos Peixes , Salmo salar , Totiviridae , Animais , Invertebrados , Filogenia , Totiviridae/genética
7.
Dis Aquat Organ ; 154: 69-83, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318386

RESUMO

Lepeophtheirus Nordmann, 1832 is a genus of sea lice that have been reported to cause parasitic disease problems for fish farming and the fishery industry. This first global investigation on Lepeophtheirus species associated with fish and infestation patterns, parasite-host interactions and geographic ranges linked to these ectoparasites covered articles published from 1940 to 2022. The total of 481 samples of Lepeophtheirus spp. comprised 49 species of these ectoparasites and were found parasitizing 100 teleost fish species from 46 families and 15 orders. Globally, a total of 9 Lepeophtheirus species were found in farmed fish (1 species occurred only in farmed fish and 8 species in both farmed and wild fish) and 48 in wild fish. The highest numbers of occurrences of Lepeophtheirus were in Serranidae and Pleuronectidae. L. pectoralis and L. salmonis were the species with widest geographic distribution. Host specificity was an important factor in the geographic distribution of L. salmonis. Most of the parasite species showed specificity for host fish families, as well as specificity for geographic regions. Little is known about many Lepeophtheirus species compared to the economical important L. salmonis. This could be an obstacle to developing improved management control strategies for the parasite in the fish farming industry, in addition to the diminishing knowledge of parasite taxonomy in many regions.


Assuntos
Copépodes , Doenças dos Peixes , Salmo salar , Animais , Interações Hospedeiro-Parasita , Peixes , Pesqueiros , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia
8.
Dis Aquat Organ ; 149: 121-132, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678357

RESUMO

In the larval stage of the parasitic copepod Lepeophtheirus salmonis, the free-living copepodid must locate and settle on a salmonid host. Chemosensory mechanisms play a role in determining whether a potential host is suitable for attachment, yet the full suite of chemical cues and resulting behavioral mechanisms used are unknown. After maturing, pre-adult female and adult male salmon lice aggregate upon salmonid hosts for reproduction. Copepodid salmon lice have been observed preferentially infesting hosts that harbor conspecific adults. The aim of this study was to investigate the possibility that salmon lice copepodids perceive and respond to cues from pre-adult female, adult-male, and/or gravid female salmon lice. Behavioral bioassays were conducted in vitro with copepodids exposed to water conditioned with 3 stages of conspecific lice (pre-adult female, adult male, or gravid female), and seawater conditioned with Atlantic salmon Salmo salar Linnaeus, 1758. Experiments demonstrated that copepodids exposed to water conditioned with the salmon host, pre-adult female, or adult male salmon lice significantly altered their behavior, whereas salmon lice exposed to water conditioned with gravid females did not. These results are potentially valuable in the development of novel methods for mitigation of L. salmonis in the salmon aquaculture industry.


Assuntos
Copépodes , Doenças dos Peixes , Salmo salar , Animais , Copépodes/fisiologia , Sinais (Psicologia) , Feminino , Doenças dos Peixes/parasitologia , Larva , Masculino , Salmão , Água
9.
J Fish Dis ; 45(1): 219-224, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34551133

RESUMO

The salmon louse Caligus rogercresseyi (Boxshall and Bravo 2000) is a common ectoparasite of farmed salmonids in Chile. Sea lice can negatively impact the growth of hosts, adversely affecting aquaculture productivity. Unlike Lepeophtheirus salmonis (Krøyer, 1838), whose life cycle parameters have been well studied due to its importance in the Northern Hemisphere, for C. rogercresseyi no single source exists that quantifies the parameters required to model this ectoparasite's life cycle. Given that different species of sea lice have substantially different biological characteristics, it is important to parameterize the life cycle of C. rogercresseyi using appropriate observational data, rather than simply trying to adapt parameters developed for L. salmonis. Using data from existing literature, we quantified the development and survival rates for each stage in the C. rogercresseyi life cycle. We illustrate how development rates are affected by water temperature and explore the important impacts of salinity on rates of survival. We present equations that can be used to model development periods and survival proportions given certain water temperature and salinity profiles. While key parameters to quantitatively model the life cycle of C. rogercresseyi are presented, further research is required to adequately model the complete population dynamics of this ectoparasite on Chilean salmon farms and consequently to support decision-making to achieve effective control and mitigation.


Assuntos
Copépodes , Doenças dos Peixes , Salmonidae , Animais , Doenças dos Peixes/epidemiologia , Estágios do Ciclo de Vida , Salmão
10.
Ecol Appl ; 31(1): e02226, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32896013

RESUMO

Many industries are required to monitor themselves in meeting regulatory policies intended to protect the environment. Self-reporting of environmental performance can place the cost of monitoring on companies rather than taxpayers, but there are obvious risks of bias, often addressed through external audits or inspections. Surprisingly, there have been relatively few empirical analyses of bias in industry self-reported data. Here, we test for bias in reporting of environmental compliance data using a unique data set from Canadian salmon farms, where companies monitor the number of parasitic sea lice on fish in open sea pens, in order to minimize impacts on wild fish in surrounding waters. We fit a hierarchical population-dynamics model to these sea-louse count data using a Bayesian approach. We found that the industry's monthly counts of two sea-louse species, Caligus clemensi and Lepeophtheirus salmonis, increased by a factor of 1.95 (95% credible interval: 1.57, 2.42) and 1.18 (1.06, 1.31), respectively, in months when counts were audited by the federal fisheries department. Consequently, industry sea-louse counts are less likely to trigger costly but mandated delousing treatments intended to avoid sea-louse epidemics in wild juvenile salmon. These results highlight the potential for combining external audits of industry self-reported data with analyses of their reporting to maintain compliance with regulations, achieve intended conservation goals, and build public confidence in the process.


Assuntos
Copépodes , Doenças dos Peixes , Parasitos , Animais , Teorema de Bayes , Canadá , Doenças dos Peixes/epidemiologia , Humanos , Oceanos e Mares , Salmão , Autorrelato
11.
Fish Shellfish Immunol ; 117: 169-178, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34389379

RESUMO

It is known that iron transporter proteins and their regulation can modulate the fish's immune system, suggesting these proteins as a potential candidate for fish vaccines. Previous studies have evidenced the effects of Atlantic salmon immunized with the chimeric iron-related protein named IPath® against bacterial and ectoparasitic infections. The present study aimed to explore the transcriptome modulation and the morphology of the sea louse Caligus rogercresseyi in response to Atlantic salmon injected with IPath®. Herein, Atlantic salmon were injected with IPath® and challenged to sea lice in controlled laboratory conditions. Then, female adults were collected after 25 days post-infection for molecular and morphological evaluation. Transcriptome analysis conducted in lice collected from immunized fish revealed high modulation of transcripts compared with the control groups. Notably, the low number of up/downregulated transcripts was mainly found in lice exposed to the IPath® fish group. Among the top-25 differentially expressed genes, Vitellogenin, Cytochrome oxidases, and proteases genes were strongly downregulated, suggesting that IPath® can alter lipid transport, hydrogen ion transmembrane transport, and proteolysis. The morphological analysis in lice collected from IPath® fish revealed abnormal embryogenesis and inflammatory processes of the genital segment. Furthermore, head kidney, spleen, and skin were also analyzed in immunized fish to evaluate the transcription expression of immune and iron homeostasis-related genes. The results showed downregulation of TLR22, MCHII, IL-1ß, ALAs, HO, BLVr, GSHPx, and Ferritin genes in head kidney and skin tissues; meanwhile, those genes did not show significant differences in spleen tissue. Overall, our findings suggest that IPath® can be used to enhance the fish immune response, showing a promissory commercial application against lice infections.


Assuntos
Copépodes/genética , Ectoparasitoses/prevenção & controle , Doenças dos Peixes/prevenção & controle , Proteínas Recombinantes/administração & dosagem , Salmo salar/parasitologia , Transcriptoma , Vacinas/administração & dosagem , Animais , Ectoparasitoses/veterinária , Feminino , Ferritinas/genética , Salmo salar/imunologia , Transferrina/genética , Vacinação
12.
Dis Aquat Organ ; 143: 37-50, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33506814

RESUMO

Studies of ectoparasites of wild-caught queenfish Scomberoides commersonnianus from several areas in northern Australia were reviewed to investigate relationships between parasite burdens, environmental conditions and external lesions. A sample of 27 queenfish captured near a dredge spoil disposal site in Gladstone Harbour, Queensland, Australia, in January 2012 was anomalous, with a high percentage of fish (66.6%) exhibiting grossly visible skin lesions including foci of erythema and petechial haemorrhages, particularly on the pectoral girdle and ventrolateral surfaces. Microscopically, lesions comprised acute epidermal erosion, ulceration and/or perivascular dermatitis with dermal oedema and depigmentation. Skin lesions were associated with high prevalence (100%) and intensity (mean = 21.2 copepods fish-1, range 4-46) of infection by sea lice Lepeophtheirus spinifer. Only queenfish infected with >10 L. spinifer presented with skin lesions. This is the first record of L. spinifer from Australia. In contrast, grossly visible skin lesions were not reported from queenfish (n = 152) sampled from other sites in the Northern Territory and Queensland, where the sampled fish had a much lower prevalence (51.3%) and intensity (mean = 3.54, range 0-26) of copepod (L. spinifer, Caligus spp. and Tuxophorus sp.) infections. Copepods from queenfish in studies undertaken outside Gladstone Harbour exhibited an over-dispersed pattern of infection, with the vast majority (n = 137, or 90.1%) of fish infected with <5 copepods. These data demonstrate that heavy L. spinifer infections, combined with poor water quality and/or direct exposure to contaminated dredge spoil and blooms of the cyanobacterium Lyngbya majuscula, can be associated with cutaneous disease in wild-caught queenfish.


Assuntos
Copépodes , Doenças dos Peixes , Perciformes , Animais , Austrália , Doenças dos Peixes/epidemiologia , Peixes , Queensland/epidemiologia
13.
J Fish Dis ; 44(6): 757-769, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33146907

RESUMO

Hydrogen peroxide (H2 O2 ) is used to treat sea lice infections of farmed salmonids in the Atlantic and Pacific Oceans and issues with resistance to this treatment, and others are a major threat to the sustainability of the industry. The objectives of this study were to determine how H2 O2 exposure affects survival and antioxidant-related gene expression in salmon lice (Lepeophtheirus salmonis) collected from the Bay of Fundy, New Brunswick. The maximum recommended dose of H2 O2 is 1,800 mg/L, while the EC50 values (with 95% CI) for the population tested were 1,486 (457, 2,515) mg/L for males and 2,126 (984, 3,268) mg/L for females. Neither temperature nor pretreatment with emamectin benzoate (EMB) impacted survival after H2 O2 exposure. RT-qPCR was performed on pre-adult sea lice exposed to H2 O2 and showed that four genes classically involved in the response to oxidative stress were unchanged between treated and control groups. Seven genes were found to be significantly upregulated in males and one in females. This is the first report on the efficacy and molecular responses of Atlantic Canada sea lice to H2 O2 treatment.


Assuntos
Antiparasitários/uso terapêutico , Copépodes/efeitos dos fármacos , Doenças dos Peixes/prevenção & controle , Peróxido de Hidrogênio/uso terapêutico , Doenças Parasitárias em Animais/prevenção & controle , Animais , Antioxidantes/metabolismo , Copépodes/genética , Copépodes/fisiologia , Feminino , Doenças dos Peixes/parasitologia , Expressão Gênica/efeitos dos fármacos , Ivermectina/análogos & derivados , Ivermectina/uso terapêutico , Longevidade/efeitos dos fármacos , Masculino , Novo Brunswick , Doenças Parasitárias em Animais/parasitologia , Temperatura
14.
J Fish Dis ; 44(12): 1971-1984, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34411315

RESUMO

The objective of this study was to estimate the impact of infestation pressures on the abundance of the parasitic sea louse, Lepeophtheirus salmonis, in the Bay of Fundy, New Brunswick (NB), Canada, using the Fish-iTrends database for the years 2009-2018. Infestation pressures were calculated as time-lagged weighted averages of the abundance of adult female (AF) sea lice within a site (internal infestation pressure: IIP) and among sites (external infestation pressure: EIP). The EIP weights were calculated from seaway distances among sites and a Gaussian kernel density for bandwidths of 5 to 60 km. The EIP with a bandwidth of 10 km had the best fit, as determined with Akaike's information criterion, and historical AF sea lice abundance. This estimated dispersal distance of 10 km was similar to previous studies in Norway, Scotland and in New Brunswick. The infestation pressures estimated from empirical AF sea lice abundance within and among sites significantly increased the abundance of AF sea lice (p < .001). This study concludes that sea lice burdens within Atlantic salmon farms in the Bay of Fundy, NB, are affected by within site management and could be improved by synchronizing treatments between sites.


Assuntos
Copépodes , Doenças dos Peixes/parasitologia , Salmo salar , Animais , Aquicultura , Feminino , Doenças dos Peixes/epidemiologia , Novo Brunswick/epidemiologia , Análise Espacial
15.
J Fish Dis ; 44(5): 633-638, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33484476

RESUMO

The sea louse Caligus rogercresseyi is the most important pathogen causing "caligidosis" in the Chilean salmon industry. In this study, using cox1 gene, we evaluate the genetic variation of C. rogercresseyi from farmed Salmo salar along a latitudinal range (40°-52°S) in south Chile to determine whether morphological differences are explained by genetic or environmental factors. Female parasites were randomly collected from S. salar at five farms. Body variation was examined using multivariate analyses and genetic heterogeneity was explored with AMOVA. C. rogercresseyi exhibited significant morphometric variability among sites and parasites collected from >54°S were the longest ones. Parasites did not show genetic structure among farms. Thus, C. rogercresseyi infesting salmons is panmictic along an extensive latitudinal range in south Chile. The same genetic pattern can be explained by the frequent movement of parasitized S. salar among farms in that region. Phenotypic plasticity in parasites could be explained by natural or aquaculture-mediated environment variability. C. rogercreseyi from 54°S could favor the local spread of this disease, suggesting an immediate health risk for the recent salmon industry in that region. Further research is required to confirm genetic homogeneity of this parasite along its geographical distribution using more powerful markers (e.g. SNPs).


Assuntos
Adaptação Fisiológica , Copépodes/fisiologia , Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Variação Genética , Salmo salar , Animais , Chile , Copépodes/anatomia & histologia , Copépodes/genética , Ectoparasitoses/parasitologia , Feminino
16.
Dis Aquat Organ ; 141: 127-138, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32969345

RESUMO

Caligus rogercresseyi is the dominant sea louse parasite affecting the salmon and trout industry in southern Chile. This parasite has a wide range of native and endemic fish hosts. The Patagonian blenny Eleginops maclovinus, which is parasitized mostly by the caligid species Lepeophtheirus spp. and C. rogercresseyi, is presumably responsible for the transmission of C. rogercresseyi to salmonids. The aim of this study was to characterize the transmission of parasites between different fish species and parasite cohort development under laboratory conditions. Parasite abundances and intensities were quantified. Transmission of parasites from Patagonian blenny to Atlantic salmon Salmo salar was lower (~9%, mainly corresponding to C. rogercresseyi) than from salmon to Patagonian blenny (14.7-26.9%, where only C. rogercresseyi were observed). This suggests that the transmission of C. rogercresseyi from salmon individuals is higher than the transmission from a native fish. Parasite cohorts developed successfully on both fish species, but apparently under different developmental rates. Water temperature, oxygen, and juvenile abundances were the variables that better explained cohort development success and variation in C. rogercresseyi adult abundances over time.


Assuntos
Copépodes , Doenças dos Peixes , Salmo salar , Salmonidae , Animais , Chile/epidemiologia , Doenças dos Peixes/epidemiologia , Salmão
17.
J Fish Dis ; 43(12): 1519-1529, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32882750

RESUMO

The salmon louse (Lepeophtheirus salmonis) is an ecologically and economically important parasite of salmonid fish. Temperature is a strong influencer of biological processes in salmon lice, with development rate increased at higher temperatures. The successful attachment of lice onto a host is also predicted to be influenced by temperature; however, the correlation of temperature with parasite survival is unknown. This study describes the effects of temperature on infection success, and survival on the host during development to the adult stage. To accurately describe infection dynamics with varying temperatures, infection success was recorded on Atlantic salmon (Salmo salar) between 2 and 10°C. Infection success ranged from 20% to 50% and was strongly correlated with temperature, with the highest success at 10°C. Parasite loss was monitored during development at eight temperatures with high loss of lice at 3 and 24°C, whilst no loss was recorded in the temperature range from 6 to 21°C. Sea temperatures thus have large effects on the outcome of salmon louse infections and should be taken into account in the management and risk assessment of this parasite. Improving understanding of the infection dynamics of salmon lice will facilitate epidemiological modelling efforts and efficiency of pest management strategies.


Assuntos
Copépodes/fisiologia , Doenças dos Peixes/parasitologia , Salmo salar/parasitologia , Temperatura , Animais , Ectoparasitoses/parasitologia
18.
J Fish Dis ; 43(4): 475-484, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32057114

RESUMO

The copepod Caligus rogercresseyi is an ectoparasite of several salmonid species. The pumping activity of filter-feeding molluscs could reduce the abundance of copepod dispersive larval stages in the water column. In this research, nauplius II and copepodid larvae of C. rogercresseyi were exposed to filtering mussels (Mytilus chilensis) of different sizes. These mussels were able to filter both larval stages, although they were more efficient in catching nauplius II. The fact that nauplius II were ingested more efficiently could be explained by their smaller size, lower swimming velocity (escape) and longer resting times between movements, when they were exposed to the influx of water around the inhalant area of the mussels. Larger mussels were more effective filtering C. rogercresseyi larvae due to their larger inhalant area and the related water influx. Additionally, the results suggest that larvae captured by the mussels can be incorporated into pseudofaeces or ingested and then released as part of the faeces. Thus, high concentrations of M. chilensis surrounding salmon farms may act as biological barriers, reducing the density of copepod dispersive larval stages and, thus, salmon infestations.


Assuntos
Copépodes , Ectoparasitoses/veterinária , Doenças dos Peixes/prevenção & controle , Cadeia Alimentar , Mytilus/fisiologia , Salmo salar , Animais , Chile , Copépodes/crescimento & desenvolvimento , Ectoparasitoses/parasitologia , Ectoparasitoses/prevenção & controle , Comportamento Alimentar , Doenças dos Peixes/parasitologia , Larva/crescimento & desenvolvimento
19.
J Fish Dis ; 43(6): 697-706, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32323347

RESUMO

Problematic sea lice infestations on farmed Atlantic salmon (Salmo salar) have motivated extensive research and development into new methods to prevent, monitor and control sea lice. Most of these technologies require detailed information on the behaviour, spatial distribution and demography of lice on host fish. This study investigated how salmon lice (Lepeophtheirus salmonis) infestation density varies across the host's surface under sea cage farming conditions. Lice abundance, demography and attachment location were tracked over time, with repeated sampling of 300 individually tagged salmon across three replicate experimental sea cages. The data reveal clear differences in attachment locations according to sex and stage, but with an overall preference for the dorsal surface among mobile stages-dorsal head for adult females and dorsal-posterior section for males and pre-adults. Total lice abundance was highly variable between repeated measures of individual fish, consistent with frequent host-switching or mortality. Total lice numbers also declined between sampling dates, likely due to handling, with lost mobile lice being almost exclusively adult males. As the distribution of sea lice on hosts is likely determined by numerous factors, future image-based automated detection systems should be validated in settings that reflect the complex host-parasite interactions that occur in open farming systems.


Assuntos
Copépodes/fisiologia , Doenças dos Peixes/parasitologia , Interações Hospedeiro-Parasita , Salmo salar , Animais , Aquicultura , Feminino , Masculino , Fatores Sexuais
20.
Parasitol Res ; 119(3): 879-884, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31768683

RESUMO

Interest and use of the lumpfish Cyclopterus lumpus L., 1758, as a cleaner fish in salmon aquaculture has grown significantly over the past 10 years. This has resulted in an explosion of new hatcheries to supply juveniles to the salmon industry. Until recently, these hatcheries have utilized a significant amount of wild broodstock to source the eggs required. Importation of wild fish into aquaculture systems brings an inherent risk of introducing pathogens into the culture systems. Gyrodactylus cyclopteri Scyborskaja, 1948, was found on local wild collected lumpfish that were brought in to start a captive lumpfish aquaculture program in Maine. Little information on the identification or description of G. cyclopteri was available. A re-description of the parasite, supplemented with molecular data, was undertaken to facilitate future identification and support research on this parasite of an emerging, economically significant new aquaculture species.


Assuntos
Doenças dos Peixes/parasitologia , Helmintíase Animal/parasitologia , Perciformes/parasitologia , Platelmintos/citologia , Platelmintos/genética , Animais , Aquicultura , Maine , Platelmintos/classificação , Platelmintos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA