Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
IEEE Open J Eng Med Biol ; 4: 268-274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38196981

RESUMO

GOAL: To evaluate suitability of respiratory signals derived from clinical 12-lead electrocardiograms (ECGs) and wearable 1-lead ECG to identify different respiration types. METHODS: ECGs were simultaneously acquired through the M12R ECG Holter by Global Instrumentation and the chest strap BioHarness 3.0 by Zephyr from 42 healthy subjects alternating normal breathing, breath holding, and deep breathing. Respiration signals were derived from the ECGs through the Segmented-Beat Modulation Method (SBMM)-based algorithm and the algorithms by Van Gent, Charlton, Soni and Sarkar, and characterized in terms of breathing rate and amplitude. Respiration classification was performed through a linear support vector machine and evaluated by F1 score. RESULTS: Best F1 scores were 86.59%(lead V2) and 80.57%, when considering 12-lead and 1-lead ECGs, respectively, and using SBMM-based algorithm. CONCLUSION: ECG-derived respiratory signals allow reliable identification of different respiration types even when acquired through wearable sensors, if associated to appropriate processing algorithms, such as the SBMM-based algorithm.

2.
Open Biomed Eng J ; 11: 25-35, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28567129

RESUMO

BACKGROUND: Fetal well-being evaluation may be accomplished by monitoring cardiac activity through fetal electrocardiography. Direct fetal electrocardiography (acquired through scalp electrodes) is the gold standard but its invasiveness limits its clinical applicability. Instead, clinical use of indirect fetal electrocardiography (acquired through abdominal electrodes) is limited by its poor signal quality. OBJECTIVE: Aim of this study was to evaluate the suitability of the Segmented-Beat Modulation Method to denoise indirect fetal electrocardiograms in order to achieve a signal-quality at least comparable to the direct ones. METHOD: Direct and indirect recordings, simultaneously acquired from 5 pregnant women during labor, were filtered with the Segmented-Beat Modulation Method and correlated in order to assess their morphological correspondence. Signal-to-noise ratio was used to quantify their quality. RESULTS: Amplitude was higher in direct than indirect fetal electrocardiograms (median:104 µV vs. 22 µV; P=7.66·10-4), whereas noise was comparable (median:70 µV vs. 49 µV, P=0.45). Moreover, fetal electrocardiogram amplitude was significantly higher than affecting noise in direct recording (P=3.17·10-2) and significantly in indirect recording (P=1.90·10-3). Consequently, signal-to-noise ratio was initially higher for direct than indirect recordings (median:3.3 dB vs. -2.3 dB; P=3.90·10-3), but became lower after denoising of indirect ones (median:9.6 dB; P=9.84·10-4). Eventually, direct and indirect recordings were highly correlated (median: ρ=0.78; P<10-208), indicating that the two electrocardiograms were morphologically equivalent. CONCLUSION: Segmented-Beat Modulation Method is particularly useful for denoising of indirect fetal electrocardiogram and may contribute to the spread of this noninvasive technique in the clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA