Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Exp Appl Acarol ; 92(4): 687-737, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38622432

RESUMO

Changes in the functional shape of astigmatan mite moveable digit profiles are examined to test if Tyrophagus putrescentiae (Acaridae) is a trophic intermediate between a typical micro-saprophagous carpoglyphid (Carpoglyphus lactis) and a common macro-saprophagous glycyphagid (Glycyphagus domesticus). Digit tip elongation in these mites is decoupled from the basic physics of optimising moveable digit inertia. Investment in the basal ramus/coronoid process compared to that for the moveable digit mastication length varies with feeding style. A differentiated ascending ramus is indicated in C. lactis and in T. putrescentiae for different trophic reasons. Culturing affects relative investments in C. lactis. A markedly different style of feeding is inferred for the carpoglyphid. The micro-saprophagous acarid does not have an intermediate pattern of trophic functional form between the other two species. Mastication surface shape complexity confirms the acarid to be heterodontous. T. putrescentiae is a particularly variably formed species trophically. A plausible evolutionary path for the gradation of forms is illustrated. Digit form and strengthening to resist bending under occlusive loads is explored in detail. Extensions to the analytical approach are suggested to confirm the decoupling of moveable digit pattern from cheliceral and chelal adaptations. Caution is expressed when interpreting ordinations of multidimensional data in mites.


Assuntos
Acaridae , Animais , Acaridae/fisiologia , Acaridae/crescimento & desenvolvimento , Acaridae/anatomia & histologia , Extremidades/anatomia & histologia , Fenômenos Biomecânicos , Comportamento Alimentar , Mastigação , Feminino
2.
Proc Biol Sci ; 287(1936): 20201883, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33049172

RESUMO

The baculum is an enigmatic bone within the mammalian glans penis, and the driving forces behind its often bizarre shape have captivated evolutionary biologists for over a century. Hypotheses for the function of the baculum include aiding in intromission, stimulating females and assisting with prolonged mating. Previous attempts to test these hypotheses have focused on the gross size of the baculum and have failed to reach a consensus. We conducted three-dimensional imaging and apply a new method to quantify three-dimensional shape complexity in the carnivoran baculum. We show that socially monogamous species are evolving towards complex-shaped bacula, whereas group-living species are evolving towards simple bacula. Overall three-dimensional baculum shape complexity is not related to relative testes mass, but tip complexity is higher in induced ovulators and species engaging in prolonged copulation. Our study provides evidence of postcopulatory sexual selection pressures driving three-dimensional shape complexity in the carnivore baculum.


Assuntos
Osso e Ossos , Carnívoros , Preferência de Acasalamento Animal , Pênis/anatomia & histologia , Animais , Evolução Biológica , Copulação , Masculino
3.
Neuroimage ; 135: 163-76, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27150231

RESUMO

The quantification of local surface morphology in the human cortex is important for examining population differences as well as developmental changes in neurodegenerative or neurodevelopmental disorders. We propose a novel cortical shape measure, referred to as the 'shape complexity index' (SCI), that represents localized shape complexity as the difference between the observed distributions of local surface topology, as quantified by the shape index (SI) measure, to its best fitting simple topological model within a given neighborhood. We apply a relatively small, adaptive geodesic kernel to calculate the SCI. Due to the small size of the kernel, the proposed SCI measure captures fine differences of cortical shape. With this novel cortical feature, we aim to capture comparatively small local surface changes that capture a) the widening versus deepening of sulcal and gyral regions, as well as b) the emergence and development of secondary and tertiary sulci. Current cortical shape measures, such as the gyrification index (GI) or intrinsic curvature measures, investigate the cortical surface at a different scale and are less well suited to capture these particular cortical surface changes. In our experiments, the proposed SCI demonstrates higher complexity in the gyral/sulcal wall regions, lower complexity in wider gyral ridges and lowest complexity in wider sulcal fundus regions. In early postnatal brain development, our experiments show that SCI reveals a pattern of increased cortical shape complexity with age, as well as sexual dimorphisms in the insula, middle cingulate, parieto-occipital sulcal and Broca's regions. Overall, sex differences were greatest at 6months of age and were reduced at 24months, with the difference pattern switching from higher complexity in males at 6months to higher complexity in females at 24months. This is the first study of longitudinal, cortical complexity maturation and sex differences, in the early postnatal period from 6 to 24months of age with fine scale, cortical shape measures. These results provide information that complement previous studies of gyrification index in early brain development.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/crescimento & desenvolvimento , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Córtex Cerebral/diagnóstico por imagem , Pré-Escolar , Feminino , Humanos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Lactente , Masculino , Sensibilidade e Especificidade , Técnica de Subtração
4.
Neurosignals ; 24(1): 102-112, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27771723

RESUMO

BACKGROUND/AIMS: In exploring human factors, stereoscopic 3D images have been used to investigate the neural responses associated with excessive depth, texture complexity, and other factors. However, the cortical oscillation associated with the complexity of stereoscopic images has been studied rarely. Here, we demonstrated that the oscillatory responses to three differently shaped 3D images (circle, star, and bat) increase as the complexity of the image increases. METHODS: We recorded simultaneous EEG/MEG for three different stimuli. Spatio-temporal and spatio-spectro-temporal features were investigated by non-parametric permutation test. RESULTS: The results showed that N300 and alpha inhibition increased in the ventral area as the shape complexity of the stereoscopic image increased. CONCLUSION: It seems that the relative disparity in complex stereoscopic images may increase cognitive processing (N300) and cortical load (alpha inhibition) in the ventral area.

5.
Heliyon ; 10(9): e30273, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694028

RESUMO

The endangered and poorly known Swamp Grass-babbler, Laticilla cinerascens (Passeriformes: Pellorneidae), confronts critical threats and vulnerability due to its specific habitat requirements and restricted populations in the northeastern region of the Indian Subcontinent. This study investigates the distribution of the species, habitat quality, geometry and shape complexity of connectivity among the protected areas (PAs), and responses to climate change in Northeast India under different climate change pathways by utilizing ensemble distribution models, and ecological metrics. From the total distribution extent (1,42,000 km2), approximately 9366 km2 (6.59 %) is identified as the suitable habitat for this threatened species. Historically centered around Dibru Saikhowa National Park (DSNP), the species faced a drastic decline due to anthropogenic activities and alteration in land use and lover cover. The study also reveals a significant decline in suitable habitat for L. cinerascens in future climate scenarios, with alarming reductions under SSP126 (>10 % in the timeframe 2041-2060 and > 30 % from 2061 to 2080), SSP245 (>90 % in both time periods), and SSP585 (>90 % in both timeframes) from the present scenario. At present, DSNP has the most suitable habitat within the distribution range but is projected to decline (>90 %) under more severe climate change scenarios, as observed in other PAs. Landscape fragmentation analysis indicates a shift in habitat geometry, highlighting the intricate impact of climate change. It predicts a substantial 343 % increase (in the SSP126) in small habitat patches in the future. Connectivity analysis among PAs shows a significant shift, with a decline exceeding 20 %. The analysis of shape complexity and connectivity geometry reveals a significant increase of over 220 % in the fragmentation of connectivity among PAs between 2061 and 2080 under the SSP585 climate change scenario compared to the present conditions. The study underscores the urgent need for conservation actions, emphasizing the complex interplay of climate change, habitat suitability, and fragmentation. Prioritizing PAs with suitable habitats and assessing their connectivity is crucial. Adaptive management strategies are essential to address ongoing environmental changes and safeguard biodiversity. Future research in critical areas is needed to establish long-term monitoring programs to lead/extend effective conservation strategies.

6.
Materials (Basel) ; 17(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39203097

RESUMO

With regard to the heating technology of small test specimens (D < 1 inch, i.e., 25.4 mm), only a limited amount of data and literature are available for making adequate technological decisions. Heating time of small geometric shapes is influenced by the technological parameters of the furnace, the temperature, the disposition technique in the furnace and the geometric characteristics of the workpiece. How to shorten heating time to achieve a suitable material structure is a vital question, while considerable energy is saved at the same time. Among the geometric characteristics, shape dependence is one of the important aspects that must be taken into account in terms of heating technology. Shape dependence is usually taken into account with empirically produced correction factors, which can result in significant oversizing of heating time, energy-wasting technology and material structure of insufficient fineness. In the course of our work, we investigated and compared the shape dependence of cylindrical and prismatic specimens with the same surface-to-volume ratios, which were combined with surface heat transfer analyses and geometric effect tests to formulate new approximate equations for determining heating time. As a result, we could mathematically derive a relationship between heating time, size and shape of the active surfaces, the correlation of which can shorten heating time by 20%. In addition, a shape factor (1.125) between cylinder and prismatic-shaped specimens was determined, which can be used with the new equation to calculate heating time for similar specimens. At last, a relationship is developed between the amount of heat that can be stored in the body during heat equalization and the complexity of the shape, which can be characterized through ratios depending on heating times and active surfaces in the function of total surface/volume ratio. Based on this relationship it can be determined more precisely when heat equalization occurs; therefore, shorter heating time can be achieved. In conclusion, with the help of this new method, optimal heating time for structural steel components, in the case of small cross-section and weight, can be determined.

7.
Adv Neurobiol ; 36: 329-363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468041

RESUMO

The fractal dimension is a morphometric measure that has been used to investigate the changes of brain shape complexity in aging and neurodegenerative diseases. This chapter reviews fractal dimension studies in aging and neurodegenerative disorders in the literature. Research has shown that the fractal dimension of the left cerebral hemisphere increases until adolescence and then decreases with aging, while the fractal dimension of the right hemisphere continues to increase until adulthood. Studies in neurodegenerative diseases demonstrated a decline in the fractal dimension of the gray matter and white matter in Alzheimer's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia. In multiple sclerosis, the white matter fractal dimension decreases, but conversely, the fractal dimension of the gray matter increases at specific stages of disease. There is also a decline in the gray matter fractal dimension in frontotemporal dementia and multiple system atrophy of the cerebellar type and in the white matter fractal dimension in epilepsy and stroke. Region-specific changes in fractal dimension have also been found in Huntington's disease and Parkinson's disease. Associations were found between the fractal dimension and clinical scores, showing the potential of the fractal dimension as a marker to monitor brain shape changes in normal or pathological processes and predict cognitive or motor function.


Assuntos
Doenças Neurodegenerativas , Humanos , Adulto , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/patologia , Fractais , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Envelhecimento , Cerebelo/diagnóstico por imagem , Cerebelo/patologia
8.
J Morphol ; 284(4): e21572, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806148

RESUMO

The penis bone, or baculum, is present in many orders of mammals, although its function is still relatively unknown, mainly due to the challenges with studying the baculum in vivo. Suggested functions include increasing vaginal friction, prolonging intromission and inducing ovulation. Since it is difficult to study baculum function directly, functional morphology can give important insights. Shape complexity techniques, in particular, are likely to offer a useful metric of baculum morphology, especially since finding homologous landmarks on such a structure is challenging. This study focuses on measuring baculum shape complexity in the Musteloidea-a large superfamily spanning a range of body sizes with well-developed, qualitatively diverse bacula. We compared two shape complexity metrics-alpha shapes and ariaDNE and conducted analyses over a range of six different coefficients, or bandwidths, in 32 species of Musteloidea. Overall, we found that shape complexity, especially at the baculum distal tip, is associated with intromission duration using both metrics. These complexities can include hooks, bifurcations and other additional projections. In addition, alpha shapes complexity was also associated with relative testes mass. These results suggest that post-copulatory mechanisms of sexual selection are probably driving the evolution of more complex-shaped bacula tips in Musteloidea and are likely to be especially involved in increasing intromission duration during copulation.


Assuntos
Copulação , Seleção Sexual , Masculino , Feminino , Animais , Benchmarking , Pênis/anatomia & histologia , Mamíferos/anatomia & histologia
9.
J Commun Disord ; 99: 106230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35728449

RESUMO

PURPOSE: Children with speech errors who have reduced motor skill may be more likely to develop residual errors associated with lifelong challenges. Drawing on models of speech production that highlight the role of somatosensory acuity in updating motor plans, this pilot study explored the relationship between motor skill and speech accuracy, and between somatosensory acuity and motor skill in children. Understanding the connections among sensorimotor measures and speech outcomes may offer insight into how somatosensation and motor skill cooperate during speech production, which could inform treatment decisions for this population. METHOD: Twenty-five children (ages 9-14) produced syllables in an /ɹ/ stimulability task before and after an ultrasound biofeedback treatment program targeting rhotics. We first tested whether motor skill (as measured by two ultrasound-based metrics of tongue shape complexity) predicted acoustically measured accuracy (the normalized difference between the second and third formant frequencies). We then tested whether somatosensory acuity (as measured by an oral stereognosis task) predicted motor skill, while controlling for auditory acuity. RESULTS: One measure of tongue shape complexity was a significant predictor of accuracy, such that higher tongue shape complexity was associated with lower accuracy at pre-treatment but higher accuracy at post-treatment. Based on the same measure, children with better somatosensory acuity produced /ɹ/ tongue shapes that were more complex, but this relationship was only present at post-treatment. CONCLUSION: The predicted relationships among somatosensory acuity, motor skill, and acoustically measured /ɹ/ production accuracy were observed after treatment, but unexpectedly did not hold before treatment. The surprising finding that greater tongue shape complexity was associated with lower accuracy at pre-treatment highlights the importance of evaluating tongue shape patterns (e.g., using ultrasound) prior to treatment, and has the potential to suggest that children with high tongue shape complexity at pre-treatment may be good candidates for ultrasound-based treatment.


Assuntos
Apraxias , Transtornos do Desenvolvimento da Linguagem , Transtorno Fonológico , Gagueira , Adolescente , Criança , Humanos , Projetos Piloto , Fala , Medida da Produção da Fala , Transtorno Fonológico/terapia
10.
Ecol Evol ; 11(15): 10709-10719, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34367607

RESUMO

Amblypygi is an arachnid order possessing a unique pair of spined pedipalps: appendages that perform in prey capture, courtship, and contest. Pedipalp length, hypothesized to be under sexual selection, varies markedly across amblypygid species, and pedipalp spination, thought to reflect selection for function in prey capture, also differs interspecifically. Differences in pedipalp shape between species may indicate that the relative strength of selection for prey capture and sexual selection vary across the group. However, interspecific differences in pedipalp shape have not been quantified, due to difficulties in identifying homologous features. For the first time, we quantify trends in amblypygid pedipalp shape complexity. We use elliptical Fourier analysis to quantify 2D complexity in pedipalp outlines across eleven species and six genera. We find that complexity significantly decreases as pedipalp length increases. This appears to be driven by relative spine length, suggesting that a trade-off exists between pedipalp length and spination. Furthermore, significant female-biased sexual dimorphism in shape complexity is present in the tibial segment of the amblypygid pedipalp. Our results provide novel insights into the drivers of amblypygid pedipalp evolution and suggest that a functional trade-off between performance in prey capture and other functions under sexual selection exist in this enigmatic structure.

11.
J Neurosci Methods ; 323: 61-67, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31125590

RESUMO

BACKGROUND: Local shape complexity can be biologically meaningful as a marker of disease, trauma, or change in brain structure over time. Fractal dimensionality (FD) is currently the dominant measure of local shape complexity used in neuroimaging but its limitations are not well understood. NEW METHOD: Elliptical Fourier harmonic power requirement (HPR) may provide complementary information to FD. We benchmarked the performance of FD and HPR on a series of simulated shapes, systematically manipulating aspects of local shape complexity, and a series of clinical contours (glioma tumour cores and stroke lesions from the BRATS and ATLAS datasets). HPR was calculated as the point of 99.9% harmonic power. FD was calculated at six resolutions (8 × 8, 16 × 16, 32 × 32, 64 × 64, 128 × 128, and 256 × 256), by using an approach which computationally indexes the complexity of the shape boundary (i.e. the number of cells defining the contour) relative to the total grid size. RESULTS AND COMPARISON WITH EXISTING METHODS: PR and FD were moderately positively correlated (r ≈ 0.2 to 0.8 depending on shape properties), and both were sensitive to the frequency and amplitude of local complexity. FD was most biased by rotation, while HPR was more biased by global shape features such as deep invaginations. FD indicated an aggregate measure of complexity across the whole contour, while HPR indicated the point of highest complexity. CONCLUSIONS: The HPR index provides conceptually distinct local complexity information from the current FD standard. Future research will benefit from using these complementary measures.


Assuntos
Encéfalo/diagnóstico por imagem , Análise de Fourier , Fractais , Doenças do Sistema Nervoso/diagnóstico por imagem , Neuroimagem/métodos , Reconhecimento Automatizado de Padrão/métodos , Humanos
12.
Artigo em Inglês | MEDLINE | ID: mdl-30696108

RESUMO

Gully erosion is a serious environmental problem worldwide, causing soil loss, land degradation, silting up of reservoirs and even catastrophic flooding. Mapping gully features from remote sensing imagery is crucial for assisting in understanding gully erosion mechanisms, predicting its development processes and assessing its environmental and socio-economic effects over large areas, especially under the increasing global climate extremes and intensive human activities. However, the potential of using increasingly available high-resolution remote sensing imagery to detect and delineate gullies has been less evaluated. Hence, 130 gullies occurred along a transect were selected from a typical watershed in the hilly and gully region of the Chinese Loess Plateau, and visually interpreted from a Pleiades-1B satellite image (panchromatic-sharpened image at 0.5 m resolution fused with 2.0 m multi-spectral bands). The interpreted gullies were compared with their measured data obtained in the field using a differential global positioning system (GPS). Results showed that gullies could generally be accurately interpreted from the image, with an average relative error of gully area and gully perimeter being 11.1% and 8.9%, respectively, and 74.2% and 82.3% of the relative errors for gully area and gully perimeter were within 15%. But involving field measurements of gullies in present imagery-based gully studies is still recommended. To judge whether gullies were mapped accurately further, a standard adopting one-pixel tolerance along the mapped gully edges was proposed and proved to be practical. Correlation analysis indicated that larger gullies could be interpreted more accurately but increasing gully shape complexity would decrease interpreting accuracy. Overall lower vegetation coverage in winter due to the withering and falling of vegetation rarely affected gully interpreting. Furthermore, gully detectability on remote sensing imagery in this region was lower than the other places of the world, due to the overall broken topography in the Loess Plateau, thus images with higher resolution than normally perceived are needed when mapping erosion features here. Taking these influencing factors (gully dimension and shape complexity, vegetation coverage, topography) into account will be favorable to select appropriate imagery and gullies (as study objects) in future imagery-based gully studies. Finally, two linear regression models were built to correct gully area (Aip, m²) and gully perimeter (Pip, m) visually extracted, by connecting them with the measured area (Ams, m²) and perimeter (Pms, m). The correction models were Ams=1.021Aip+0.139 and Pms=0.949Pip+ 0.722, respectively. These models could be helpful for improving the accuracy of interpreting results, and further accurately estimating gully development and developing more effective automated gully extraction methods on the Loess Plateau of China.


Assuntos
Conservação dos Recursos Naturais/métodos , Sistemas de Informação Geográfica/estatística & dados numéricos , Lagoas , Tecnologia de Sensoriamento Remoto/métodos , Solo , Áreas Alagadas , China , Modelos Teóricos , Estações do Ano
13.
Artigo em Inglês | MEDLINE | ID: mdl-26028803

RESUMO

The quantification of local surface complexity in the human cortex has shown to be of interest in investigating population differences as well as developmental changes in neurodegenerative or neurodevelopment diseases. We propose a novel assessment method that represents local complexity as the difference between the observed distributions of local surface topology to its best-fit basic topology model within a given local neighborhood. This distribution difference is estimated via Earth Move Distance (EMD) over the histogram within the local neighborhood of the surface topology quantified via the Shape Index (SI) measure. The EMD scores have a range from simple complexity (0.0), which indicates a consistent local surface topology, up to high complexity (1.0), which indicates a highly variable local surface topology. The basic topology models are categorized as 9 geometric situation modeling situations such as crowns, ridges and fundi of cortical gyro and sulci. We apply a geodesic kernel to calculate the local SI histrogram distribution within a given region. In our experiments, we obtained the results of local complexity that shows generally higher complexity in the gyral/sulcal wall regions and lower complexity in some gyral ridges and lowest complexity in sulcal fundus areas. In addition, we show expected, preliminary results of increased surface complexity across most of the cortical surface within the first years of postnatal life, hypothesized to be due to the changes such as development of sulcal pits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA