Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(1): 206-214, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36259414

RESUMO

The costs and benefits of being social vary with environmental conditions, so individuals must weigh the balance between these trade-offs in response to changes in the environment. Temperature is a salient environmental factor that may play a key role in altering the costs and benefits of sociality through its effects on food availability, predator abundance, and other ecological parameters. In ectotherms, changes in temperature also have direct effects on physiological traits linked to social behaviour, such as metabolic rate and locomotor performance. In light of climate change, it is therefore important to understand the potential effects of temperature on sociality. Here, we took the advantage of a 'natural experiment' of threespine sticklebacks from contrasting thermal environments in Iceland: geothermally warmed water bodies (warm habitats) and adjacent ambient-temperature water bodies (cold habitats) that were either linked (sympatric) or physically distinct (allopatric). We first measured the sociability of wild-caught adult fish from warm and cold habitats after acclimation to a low and a high temperature. At both acclimation temperatures, fish from the allopatric warm habitat were less social than those from the allopatric cold habitat, whereas fish from sympatric warm and cold habitats showed no differences in sociability. To determine whether differences in sociability between thermal habitats in the allopatric population were heritable, we used a common garden breeding design where individuals from the warm and the cold habitat were reared at a low or high temperature for two generations. We found that sociability was indeed heritable but also influenced by rearing temperature, suggesting that thermal conditions during early life can play an important role in influencing social behaviour in adulthood. By providing the first evidence for a causal effect of rearing temperature on social behaviour, our study provides novel insights into how a warming world may influence sociality in animal populations.


Assuntos
Smegmamorpha , Animais , Aclimatação , Temperatura , Peixes/fisiologia , Água
2.
Glob Chang Biol ; 28(4): 1388-1401, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34918444

RESUMO

Gregarious behaviours are common in animals and provide various benefits such as food acquisition and protection against predators. Many gregarious tropical species are shifting poleward under current ocean warming, creating novel species and social interactions with local temperate taxa. However, how the dynamics of these novel shoals might be altered by future ocean warming and acidification remains untested. Here we evaluate how novel species interactions, ocean acidification and warming affect shoaling dynamics, motor lateralization and boldness of range-extending tropical and co-shoaling temperate fishes under controlled laboratory conditions. Fishes were exposed to 1 of 12 treatments (combinations of three temperature levels, two pCO2  levels and two shoal type levels: mixed species or temperate only) for 38 days. Lateralization (a measure of asymmetric expression of cognitive function in group coordination and predator escape) of tropical and temperate species was right-side biased under present-day conditions, but side bias significantly diminished in tropical and temperate fishes under ocean acidification. Ocean acidification also decreased shoal cohesion irrespective of shoaling type, with mixed-species shoals showing significantly lower cohesion than temperate-only shoals irrespective of climate stressors. Tropical fish became bolder under ocean acidification (after 4 weeks), and temperate fish became bolder with increasing temperature, while ocean acidification dampened temperate fish boldness. Our findings highlight the direct effect of climate stressors on fish behaviour and the interplay with the indirect effects of novel species interactions. Because strong shoal cohesion and lateralization are key determinants of species fitness, their degradation under ocean warming and acidification could adversely affect species performance in novel assemblages in a future ocean, and might slow down tropical species range extensions.


Assuntos
Peixes , Água do Mar , Animais , Mudança Climática , Aquecimento Global , Concentração de Íons de Hidrogênio , Oceanos e Mares , Temperatura
3.
Biol Lett ; 18(8): 20220167, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35975629

RESUMO

While the link between the gut microbiome and host behaviour is well established, how the microbiomes of other organs correlate with behaviour remains unclear. Additionally, behaviour-microbiome correlations are likely sex-specific because of sex differences in behaviour and physiology, but this is rarely tested. Here, we tested whether the skin microbiome of the Trinidadian guppy, Poecilia reticulata, predicts fish activity level and shoaling tendency in a sex-specific manner. High-throughput sequencing revealed that the bacterial community richness on the skin (Faith's phylogenetic diversity) was correlated with both behaviours differently between males and females. Females with richer skin-associated bacterial communities spent less time actively swimming. Activity level was significantly correlated with community membership (unweighted UniFrac), with the relative abundances of 16 bacterial taxa significantly negatively correlated with activity level. We found no association between skin microbiome and behaviours among male fish. This sex-specific relationship between the skin microbiome and host behaviour may indicate sex-specific physiological interactions with the skin microbiome. More broadly, sex specificity in host-microbiome interactions could give insight into the forces shaping the microbiome and its role in the evolutionary ecology of the host.


Assuntos
Microbioma Gastrointestinal , Poecilia , Animais , Bactérias/genética , Evolução Biológica , Feminino , Masculino , Filogenia , Poecilia/fisiologia
4.
Sensors (Basel) ; 22(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35591170

RESUMO

In recent decades, zebrafish have become an increasingly popular laboratory organism in several fields of research due to their ease of reproduction and rapid maturation. In particular, shoaling behavior has attracted the attention of many researchers. This article presents a fully printed robotic model used to sense and stimulate shoaling behavior in zebrafish (Danio rerio). Specifically, we exposed laboratory-fabricated replicated materials to critical acid/base/salt environments and evaluated the mechanical, optical, and surface properties after a three-month immersion period. Focusing on weatherability, these test samples maintained high tensile strength (~45 MPa) and relatively similar transmission (>85%T in the visible region), as determined by UV−vis/FTIR spectroscopy. Three-dimensional (3D) printing technology allowed printing of models with different sizes and appearances. We describe the sense of zebrafish responses to replicas of different sizes and reveal that replicas approximating the true zebrafish size (3 cm) are more attractive than larger replicas (5 cm). This observation suggests that larger replicas appear as predators to the zebrafish and cause fleeing behavior. In this study, we determined the weatherability of a high-transparency resin and used it to fabricate a fully printed driving device to induce shoaling by zebrafish. Finally, we demonstrate a weathering-resistant (for three months) 3D-printed decoy model with potential utility for future studies of outdoor shoaling behavior, and the result has the potential to replace the traditional metal frame devices used in outdoor experiments.


Assuntos
Procedimentos Cirúrgicos Robóticos , Peixe-Zebra , Animais , Comportamento Animal/fisiologia , Impressão Tridimensional , Comportamento Social
5.
J Fish Biol ; 100(4): 1025-1032, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35138635

RESUMO

Members of several shoaling species have been shown to prefer to associate with familiar individuals, enhancing the benefits of aggregation. The authors used a series of social preference tasks in the laboratory to evaluate whether prior familiarity with potential partners influences preference of shoaling partner in male zebrafish (Danio rerio), a social species found in shallow, slow-moving waters. The authors found that though male zebrafish exhibited a strong preference for shoaling with a male conspecific as opposed to remaining alone, they exhibited no preference for familiar over unfamiliar conspecifics. This suggests that the benefits of familiarity for shoaling behaviour may not be as important for male zebrafish as has been shown in other social fish species.


Assuntos
Comportamento Social , Peixe-Zebra , Animais , Comportamento Animal , Masculino
6.
Behav Res Methods ; 54(5): 2433-2444, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34918227

RESUMO

Video playback is a widely used technique for presentation of visual stimuli in animal behavior research. In the analysis of behavioral responses to social cues, presentation of video recordings of live conspecifics represents a consistently reproducible stimulus. However, video-recordings do not interact with the experimental subject, and thus this stimulus may be inferior in the social context. Here, we evaluated how angelfish (Pterophyllum scalare) respond to a video playback of conspecifics versus a live shoal of conspecifics. Using binary choice tests, subjects were presented different stimuli. Time spent close to one versus the other stimulus was considered an index of preference. We found angelfish to prefer a live shoal of conspecifics to an empty tank, and also the video playback of a shoal of conspecifics to a blank screen, although the level of preference in the latter was lower than in the former. These results indicate that video-playback of live conspecifics may be appropriate in angelfish, thus allowing manipulation of specific cues that angelfish may use in quantity discrimination. However, when we directly contrasted a live and a video recorded shoal, both having the same number of members, experimental fish preferred the live shoal. When the choice consisted of a live shoal of four conspecifics versus a video playback of a shoal of nine conspecifics no clear preference emerged. These results imply that video-playback has disadvantages in quantity discrimination studies with angelfish. Exploring procedural and/or technological parameters will verify the suitability of video-recording-based stimulus presentation for future use in angelfish.


Assuntos
Ciclídeos , Discriminação Psicológica , Animais , Comportamento de Escolha , Comportamento Animal , Sinais (Psicologia)
7.
J Fish Biol ; 99(4): 1307-1317, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34184282

RESUMO

Group living is widespread in animals, and many fishes form shoals. Examining within-group interactions in fishes may contribute to the general understanding of dynamic social structures in animals. The sex ratio of a group has been shown to influence grouping decisions of fishes and can be expected to affect behaviour at group level. Behavioural experiments usually involve relatively short acclimatisation times, although the establishment of environmental habituation in fishes is understudied. This study tests whether the sex ratio and long-term habituation to experimental conditions influence general shoal performance (activity parameters, density) and responses of shoals to an acoustic-mechanical disturbance cue in juveniles of the cichlid fish Pelvicachromis taeniatus via individual tracking. The disturbance consisted of a defined hit against the experimental tank, which caused sudden noise and water movement. We found that a higher proportion of females increases shoal activity (swimming speed and distance covered), suggesting that female P. taeniatus are more active than males. Furthermore, shoal activity declined when shoals habituated to the experimental settings and with the time that the shoals were grouped together, which may reflect intensified group member familiarity. Moreover, behavioural changes after disturbance were weaker when individuals were kept with their group longer and more familiar to the experimental conditions. For prey species, lower activity might be beneficial under natural conditions due to lower conspicuousness of the group. We did not find any significant effects of the investigated factors on shoal density (mean interindividual distance) and speed synchronisation. The results indicate that sexual composition, familiarity between shoal members and habituation to the experimental environment affect shoal performance in a cichlid fish.


Assuntos
Ciclídeos , Animais , Comportamento Animal , Feminino , Habituação Psicofisiológica , Masculino , Comportamento Social , Natação
8.
J Neurosci ; 39(24): 4694-4713, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-30948475

RESUMO

Adult zebrafish, in contrast to mammals, regenerate neurons in their brain, but the extent and variability of this capacity is unclear. Here we ask whether the loss of various dopaminergic neuron populations is sufficient to trigger their functional regeneration. Both sexes of zebrafish were analyzed. Genetic lineage tracing shows that specific diencephalic ependymo-radial glial (ERG) progenitor cells give rise to new dopaminergic [tyrosine hydroxylase-positive (TH+)] neurons. Ablation elicits an immune response, increased proliferation of ERG progenitor cells, and increased addition of new TH+ neurons in populations that constitutively add new neurons (e.g., diencephalic population 5/6). Inhibiting the immune response attenuates neurogenesis to control levels. Boosting the immune response enhances ERG proliferation, but not addition of TH+ neurons. In contrast, in populations in which constitutive neurogenesis is undetectable (e.g., the posterior tuberculum and locus ceruleus), cell replacement and tissue integration are incomplete and transient. This is associated with a loss of spinal TH+ axons, as well as permanent deficits in shoaling and reproductive behavior. Hence, dopaminergic neuron populations in the adult zebrafish brain show vast differences in regenerative capacity that correlate with constitutive addition of neurons and depend on immune system activation.SIGNIFICANCE STATEMENT Despite the fact that zebrafish show a high propensity to regenerate neurons in the brain, this study reveals that not all types of dopaminergic neurons are functionally regenerated after specific ablation. Hence, in the same adult vertebrate brain, mechanisms of successful and incomplete regeneration can be studied. We identify progenitor cells for dopaminergic neurons and show that activating the immune system promotes the proliferation of these cells. However, in some areas of the brain this only leads to insufficient replacement of functionally important dopaminergic neurons that later disappear. Understanding the mechanisms of regeneration in zebrafish may inform interventions targeting the regeneration of functionally important neurons, such as dopaminergic neurons, from endogenous progenitor cells in nonregenerating mammals.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Fenômenos do Sistema Imunitário/fisiologia , Regeneração Nervosa/fisiologia , Peixe-Zebra/fisiologia , Envelhecimento , Animais , Axônios/fisiologia , Linhagem da Célula/genética , Proliferação de Células , Diencéfalo/citologia , Diencéfalo/fisiologia , Feminino , Masculino , Microglia/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Neurogênese/fisiologia , Comportamento Sexual Animal/fisiologia
9.
Anim Cogn ; 23(4): 827-831, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32303866

RESUMO

Pro-social effects of oxytocin and its homologues are well-documented in birds and mammals. However, in fishes, the effect of isotocin, the homologue of oxytocin, on social behaviour is less clear. Studies in fishes have generally shown no effect of isotocin on social behaviours or even an anti-social effect. In our study, we measured association preference for conspecifics in 92 adult guppies (46 females and 46 males), half of which were injected with isotocin and the other half with an isotocin antagonist. We found that individuals injected with isotocin spent 29% more time associating with conspecifics than individuals injected with an isotocin antagonist. The effect of isotocin on association time did not differ between males and females. Our study provides some of the first evidence of a pro-social effects of isotocin in a fish and suggests that in fishes, isotocin may have a homologous role to oxytocin, at least in promoting shoaling behaviour.


Assuntos
Poecilia , Animais , Feminino , Masculino , Ocitocina/análogos & derivados , Comportamento Social
10.
Fish Shellfish Immunol ; 105: 359-368, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32693159

RESUMO

Quercetin, a potential fish food supplement, has been reported to process many beneficial properties. However, some negative effects of quercetin have been observed, which pointed out necessity for additional studies to evaluate its safety. Therefore, the present study investigated effects of quercetin (0.01, 0.1, 1, 10, 100 and 1000 µg/L) on shoaling and anxiety behaviors through novel tank tests in zebrafish (Danio rerio). Furthermore, oxidative stress, neuroinflammation and apoptosis in the brains were examined to learn more about mechanisms of action related to quercetin. The results showed that quercetin at the lower concentrations exerted beneficial effects on shoaling and anxiety behaviors. On the contrary, when quercetin was up to 1000 µg/L, it exerted detrimental effects shown as decreases of movement and increases of anxiety behaviors. Generally, U-shaped responses of antioxidant enzyme activities (superoxide dismutase and catalase), and inversed U-shaped responses of inflammatory mediators (cyclooxygenase-2) and cytokines (interleukin-1ß, interleukin-6, interleukin-10, and tumor necrosis factor α) to quercetin treatment were found in the brains. In addition, quercetin at the lower concentrations attenuated cell apoptosis, while even more apoptosis was found at the 1000 µg/L quercetin group. In conclusion, quercetin could exert beneficial or detrimental effects on the shoaling and anxiety behaviors depending on the treatment concentrations, and the underlying mechanisms are potentially associated with neuroinflammation and neuron apoptosis.


Assuntos
Ansiedade , Apoptose/imunologia , Inflamação/veterinária , Quercetina/metabolismo , Comportamento Social , Natação , Peixe-Zebra/imunologia , Ração Animal/análise , Animais , Ansiedade/induzido quimicamente , Apoptose/efeitos dos fármacos , Encéfalo/imunologia , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Inflamação/induzido quimicamente , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Estresse Oxidativo/imunologia , Quercetina/administração & dosagem
11.
Proc Natl Acad Sci U S A ; 114(9): 2295-2300, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193864

RESUMO

The striking patterns of collective animal behavior, including ant trails, bird flocks, and fish schools, can result from local interactions among animals without centralized control. Several of these rules of interaction have been proposed, but it has proven difficult to discriminate which ones are implemented in nature. As a method to better discriminate among interaction rules, we propose to follow the slow birth of a rule of interaction during animal development. Specifically, we followed the development of zebrafish, Danio rerio, and found that larvae turn toward each other from 7 days postfertilization and increase the intensity of interactions until 3 weeks. This developmental dataset allows testing the parameter-free predictions of a simple rule in which animals attract each other part of the time, with attraction defined as turning toward another animal chosen at random. This rule makes each individual likely move to a high density of conspecifics, and moving groups naturally emerge. Development of attraction strength corresponds to an increase in the time spent in attraction behavior. Adults were found to follow the same attraction rule, suggesting a potential significance for adults of other species.


Assuntos
Larva/fisiologia , Comportamento de Massa , Modelos Estatísticos , Peixe-Zebra/fisiologia , Animais , Comportamento Animal , Aprendizado de Máquina
12.
Proc Biol Sci ; 286(1903): 20190891, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31138077

RESUMO

Collective motion by animal groups can emerge from simple rules that govern each individual's interactions with its neighbours. Studies of extant species have shown how such rules yield coordinated group behaviour, but little is known of their evolutionary origins or whether extinct group-living organisms used similar rules. Here, we report evidence consistent with coordinated collective motion in a fossilized group of the extinct fish Erismatopterus levatus, and we infer possible behavioural rules that underlie it. We found traces of two rules for social interaction similar to those used by extant fishes: repulsion from close individuals and attraction towards neighbours at a distance. Moreover, the fossilized fish showed group-level structures in the form of oblong shape and high polarization, both of which we successfully reproduced in simulations incorporating the inferred behavioural rules. Although it remains unclear how the fish shoal's structure was preserved in the fossil, these findings suggest that fishes have been forming shoals by combining sets of simple behavioural rules since at least the Eocene. Our study highlights the possibility of exploring the social communication of extinct animals, which has been thought to leave no fossil record.


Assuntos
Peixes/fisiologia , Comportamento Social , Natação , Animais , Fósseis , Estados Unidos
13.
J Anim Ecol ; 88(9): 1281-1290, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30997683

RESUMO

Animal signalling systems outside the realm of human perception remain largely understudied. These systems consist of four main components: a signalling context, a voluntary signal, receiver responses and resulting fitness benefits to both the signaller and receiver(s). It is often most difficult to determine incidental cues from voluntary signals. One example is chemical disturbance cues released by aquatic prey during predator encounters that may serve to alert conspecifics of nearby risk and initiate tighter shoaling. We aimed to test whether disturbance cues are released incidentally (i.e. as a cue) or are produced voluntarily depending on a specific signalling context such as the audience surrounding the individual, and thus constitute a signal. We hypothesized that if receivers use disturbance cues to communicate risk among themselves, they would produce more (or more potent) disturbance cues when present in a group of conspecifics rather than when they are isolated (presence/absence of an audience) and use disturbance cues more when present alongside familiar rather than unfamiliar conspecifics (audience composition effect). We placed fathead minnows (Pimephales promelas) in groups with familiar fish, unfamiliar fish or as isolated individuals with no audience present, and then simulated a predator chase to evoke disturbance cues. We used bioassays with independent receivers to assess whether the disturbance cues produced differed depending on the signallers' audience. We found evidence of voluntary signalling, as minnows responded to disturbance cues from groups of fish with tighter shoaling while disturbance cues from isolated minnows did not evoke a significant shoaling response (presence/absence audience effect). Receivers also increased shoaling, freezing and dashing more in response to disturbance cues from familiar groups compared to disturbance cues from unfamiliar groups or isolated minnows (audience composition effect). Together, these findings support our hypothesis that disturbance cues are used as an antipredator signal to initiate coordinated group defences among familiar conspecifics involving shoaling, freezing and dashing. This study represents the strongest evidence to date that chemicals released by aquatic prey upon disturbance by predators serve as voluntary signals rather than simply cues that prey have evolved to detect when assessing their risk of predation.


Assuntos
Sinais (Psicologia) , Cyprinidae , Animais , Comportamento Predatório
14.
Biol Lett ; 15(10): 20190335, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31573425

RESUMO

Numerous studies have reported functional improvements in collective behaviour with increasing group size, however, the possibility that such improvements may saturate or even decline as group size continues to grow have seldom been tested experimentally. Here, we tested the ability of solitary three-spined sticklebacks and those in groups, ranging from 2 to 29 fish, to leave an unfavourable patch of habitat. Our results replicate the findings of previous studies at low group sizes, with the fish initially showing a reduction in their latency to leave the unfavourable habitat as group size increased. As group size continued to increase, however, latency to leave the habitat increased, so that the functional relationship between group size and latency to depart was U-shaped. Our results suggest an optimum group size in this context of between 12 and 20 fish. Underlying this group-level trend was a similar U-shaped relationship between group size and the first fish to leave the habitat, suggesting that at larger group sizes, social conformity to the behaviour of the majority can stifle the ability of fish to innovate-in this case, to induce a collective movement from the unfavourable habitat.


Assuntos
Smegmamorpha , Animais , Tomada de Decisões , Ecossistema , Peixes , Conformidade Social
15.
Biol Lett ; 14(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089660

RESUMO

Anti-predator benefits associated with living in groups are multiple and taxonomically widespread. In fish shoals, individuals can exploit the confusion effect, whereby predators struggle to target a single individual among several individuals. Theory predicts that the confusion effect could be aided by homogeneity in appearance; thus, individuals should group by phenotypic characteristics, contributing to generating high within-shoal phenotypic homogeneity. While assortments by body size have been extensively documented, almost nothing is known about whether within-shoal homogeneity in body pigmentation affects shoaling preference. To investigate this issue, we used the Mediterranean killifish, Aphanius fasciatus, a shoaling species characterized by conspicuous vertical bars on body sides. Individual females were given a choice between two novel shoals characterized by either a high or low degree of homogeneity in the number of bars. As predicted, individual females preferentially associated with the shoal showing the higher phenotypic homogeneity. Our data demonstrated that fish might associate with the shoal that maximizes phenotypic homogeneity in body pigmentation, irrespective of their own phenotype.


Assuntos
Comportamento Animal/fisiologia , Fundulidae/fisiologia , Fenótipo , Animais , Pigmentação
16.
J Fish Biol ; 92(5): 1371-1384, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29516502

RESUMO

Cetorhinus maximus aggregations recorded during extensive aerial survey efforts off the north-eastern United States between 1980 and 2013 included aggregations centring on sightings with group sizes of at least 30 individuals. These aggregations occurred in summer and autumn months and included aggregation sizes of up to 1398 individuals, the largest aggregation ever reported for this species. The aggregations were associated with sea surface temperatures of 13-24° C and chlorophyll-a concentrations of 0·4-2·6 mg m-3 and during one aggregation, a high abundance of zooplankton prey was present. Photogrammetric tools allowed for the estimation of total body lengths ranging between 4 and 8 m. Characterization of these events provides new insight into the potential biological function of large aggregations in this species.


Assuntos
Distribuição Animal , Tubarões , Animais , Oceano Atlântico , Copépodes , Ecossistema , Fotogrametria , Tecnologia de Sensoriamento Remoto , Estações do Ano , Temperatura , Zooplâncton
17.
J Fish Biol ; 92(5): 1574-1589, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29624696

RESUMO

We investigated the consistency of association network structure for groups of sticklebacks Gasterosteus aculeatus. Each group was observed twice and we varied the duration between observations and the size of the experimental arena that they were observed in. At the dyad level, we found positive correlations between dyad interaction frequencies across observations. At the group level we found variation in four network metrics between observations, but only in treatments where the duration between observations was short. Specifically, fish formed more and smaller groups in the second observation in this treatment. Fish were also organized into more subunits in the larger arenas. Finally, we saw positive correlations between some group network metrics across observations suggesting relative consistency at the group level. There are several processes that might drive these interaction patterns. Our findings have implications for experimental design and the comparison and integration of findings of experiments from different studies carried out under different conditions.


Assuntos
Comportamento Animal , Smegmamorpha/fisiologia , Comportamento Social , Animais , Ecossistema
18.
J Fish Biol ; 93(1): 119-127, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29855056

RESUMO

A novel image analysis-based technique applied to unmanned aerial vehicle (UAV) survey data is described to detect and locate individual free-ranging sharks within aggregations. The method allows rapid collection of data and quantification of fine-scale swimming and collective patterns of sharks. We demonstrate the usefulness of this technique in a small-scale case study exploring the shoaling tendencies of blacktip reef sharks Carcharhinus melanopterus in a large lagoon within Moorea, French Polynesia. Using our approach, we found that C. melanopterus displayed increased alignment with shoal companions when distributed over a sandflat where they are regularly fed for ecotourism purposes as compared with when they shoaled in a deeper adjacent channel. Our case study highlights the potential of a relatively low-cost method that combines UAV survey data and image analysis to detect differences in shoaling patterns of free-ranging sharks in shallow habitats. This approach offers an alternative to current techniques commonly used in controlled settings that require time-consuming post-processing effort.


Assuntos
Comportamento Animal , Tubarões , Animais , Ecossistema , Processamento de Imagem Assistida por Computador , Polinésia
19.
Proc Biol Sci ; 284(1863)2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28954915

RESUMO

Noise produced from a variety of human activities can affect the physiology and behaviour of individual animals, but whether noise disrupts the social behaviour of animals is largely unknown. Animal groups such as flocks of birds or shoals of fish use simple interaction rules to coordinate their movements with near neighbours. In turn, this coordination allows individuals to gain the benefits of group living such as reduced predation risk and social information exchange. Noise could change how individuals interact in groups if noise is perceived as a threat, or if it masked, distracted or stressed individuals, and this could have impacts on the benefits of grouping. Here, we recorded trajectories of individual juvenile seabass (Dicentrarchus labrax) in groups under controlled laboratory conditions. Groups were exposed to playbacks of either ambient background sound recorded in their natural habitat, or playbacks of pile-driving, commonly used in marine construction. The pile-driving playback affected the structure and dynamics of the fish shoals significantly more than the ambient-sound playback. Compared to the ambient-sound playback, groups experiencing the pile-driving playback became less cohesive, less directionally ordered, and were less correlated in speed and directional changes. In effect, the additional-noise treatment disrupted the abilities of individuals to coordinate their movements with one another. Our work highlights the potential for noise pollution from pile-driving to disrupt the collective dynamics of fish shoals, which could have implications for the functional benefits of a group's collective behaviour.


Assuntos
Bass/fisiologia , Comportamento Animal , Ruído , Comportamento Social , Animais , Som
20.
Anim Cogn ; 20(5): 813-821, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28616841

RESUMO

Numerical abilities have been demonstrated in a variety of non-human vertebrates. However, underlying biological mechanisms have been difficult to study due to a paucity of experimental tools. Powerful genetic and neurobiological tools already exist for the zebrafish, but numerical abilities remain scarcely explored with this species. Here, we investigate the choice made by single experimental zebrafish between numerically different shoals of conspecifics presented concurrently on opposite sides of the experimental tank. We examined this choice using the AB strain and pet store zebrafish. We found zebrafish of both populations to generally prefer the numerically larger shoal to the smaller one. This preference was significant for contrasted ratios above or equalling 2:1 (i.e. 4 vs. 0, 4 vs. 1, 8 vs. 2, 6 vs. 2 and 6 vs. 3). Interestingly, zebrafish showed no significant preference when each of the two contrasted shoals had at least 4 members, e.g. in a contrast 8 versus 4. These results confirm that zebrafish possess the ability to distinguish larger numbers of items from smaller number of items, in a shoaling context, with a potential limit above 4. Our findings confirm the utility of the zebrafish for the exploration of both the behavioural and the biological mechanisms underlying numerical abilities in vertebrates.


Assuntos
Comportamento de Escolha , Discriminação Psicológica , Peixe-Zebra/fisiologia , Animais , Comportamento Animal , Conceitos Matemáticos , Comportamento Social , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA