Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 40(7): 1440-1452, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31826942

RESUMO

Neuronal diversity provides the spinal cord with the functional flexibility required to perform complex motor tasks. Spinal neurons arise during early embryonic development with the establishment of spatially and molecularly discrete progenitor domains that give rise to distinct, but highly heterogeneous, postmitotic interneuron (IN) populations. Our previous studies have shown that Sim1-expressing V3 INs, originating from the p3 progenitor domain, are anatomically and physiologically divergent. However, the developmental logic guiding V3 subpopulation diversity remains elusive. In specific cases of other IN classes, neurogenesis timing can play a role in determining the ultimate fates and unique characteristics of distinctive subpopulations. To examine whether neurogenesis timing contributes to V3 diversity, we systematically investigated the temporal neurogenesis profiles of V3 INs in the mouse spinal cord. Our work uncovered that V3 INs were organized into either early-born [embryonic day 9.5 (E9.5) to E10.5] or late-born (E11.5-E12.5) neurogenic waves. Early-born V3 INs displayed both ascending and descending commissural projections and clustered into subgroups across dorsoventral spinal laminae. In contrast, late-born V3 INs became fate-restricted to ventral laminae and displayed mostly descending and local commissural projections and uniform membrane properties. Furthermore, we found that the postmitotic transcription factor, Sim1, although expressed in all V3 INs, exclusively regulated the dorsal clustering and electrophysiological diversification of early-born, but not late-born, V3 INs, which indicates that neurogenesis timing may enable newborn V3 INs to interact with different postmitotic differentiation pathways. Thus, our work demonstrates neurogenesis timing as a developmental mechanism underlying the postmitotic differentiation of V3 INs into distinct subpopulation assemblies.SIGNIFICANCE STATEMENT Interneuron (IN) diversity empowers the spinal cord with the computation flexibility required to perform appropriate sensorimotor control. As such, uncovering the developmental logic guiding spinal IN diversity is fundamental to understanding the development of movement. In our current work, through a focus on the cardinal spinal V3 IN population, we investigated the role of neurogenesis timing on IN diversity. We uncovered that V3 INs are organized into early-born [embryonic day 9.5 (E9.5) to E10.5] or late-born (E11.5-E12.5) neurogenic waves, where late-born V3 INs display increasingly restricted subpopulation fates. Next, to better understand the consequences of V3 neurogenesis timing, we investigated the time-dependent functions of the Sim1 transcription factor, which is expressed in postmitotic V3 INs. Interestingly, Sim1 exclusively regulated the diversification of early-born, but not late-born, V3 INs. Thus, our current work indicates neurogenesis timing can modulate the functions of early postmitotic transcription factors and, thus, subpopulation fate specifications.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Interneurônios/fisiologia , Neurogênese , Proteínas Repressoras/fisiologia , Medula Espinal/citologia , Animais , Transporte Axonal , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula , Movimento Celular , Cruzamentos Genéticos , Ácido Glutâmico/fisiologia , Interneurônios/classificação , Camundongos , Camundongos Knockout , Neurotransmissores/fisiologia , Técnicas de Patch-Clamp , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Medula Espinal/embriologia , Medula Espinal/crescimento & desenvolvimento , Fatores de Tempo
2.
Cell Rep ; 43(1): 113635, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38160393

RESUMO

Spinal neural circuits that execute movement are composed of cardinal classes of neurons that emerged from distinct progenitor lineages. Each cardinal class contains multiple neuronal subtypes characterized by distinct molecular, anatomical, and physiological characteristics. Through a focus on the excitatory V3 interneuron class, here we demonstrate that interneuron subtype diversity is delineated through a combination of neurogenesis timing and final laminar settling position. We have revealed that early-born and late-born embryonic V3 temporal classes further diversify into subclasses with spatially and molecularly discrete identities. While neurogenesis timing accounts for V3 morphological diversification, laminar settling position accounts for electrophysiological profiles distinguishing V3 subtypes within the same temporal classes. Furthermore, V3 interneuron subtypes display independent behavioral recruitment patterns demonstrating a functional modularity underlying V3 interneuron diversity. These studies provide a framework for how early embryonic temporal and spatial mechanisms combine to delineate spinal interneuron classes into molecularly, anatomically, and functionally relevant subtypes in adults.


Assuntos
Interneurônios , Medula Espinal , Interneurônios/fisiologia , Movimento , Neurogênese/fisiologia
3.
Dev Neurobiol ; 75(9): 1003-17, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25652362

RESUMO

V3 spinal interneurons (INs) are a group of excitatory INs that play a crucial role in producing balanced and stable gaits in vertebrate animals. In the developing mouse spinal cord, V3 INs arise from the most ventral progenitor domain and form anatomically distinctive subpopulations in adult spinal cords. They are marked by the expression of transcription factor Sim1 postmitotically, but the function of Sim1 in V3 development remains unknown. Here, we used Sim1(Cre) ;tdTomato mice to trace the fate of V3 INs in a Sim1 mutant versus control genetic background during development. In Sim1 mutants, V3 INs are produced normally and maintain a similar position and organization as in wild types before E12.5. Further temporal analysis revealed that the V3 INs in the mutants failed to migrate properly to form V3 subgroups along the dorsoventral axis of the spinal cord. At birth, in the Sim1 mutant the number of V3 INs in the ventral subgroup was normal, but they were significantly reduced in the dorsal subgroup with a concomitant increase in the intermediate subgroup. Retrograde labeling at lumbar level revealed that loss of Sim1 led to a reduction in extension of contralateral axon projections both at E14.5 and P0 without affecting ipsilateral axon projections. These results demonstrate that Sim1 is essential for proper migration and the guidance of commissural axons of the spinal V3 INs.


Assuntos
Axônios/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Movimento Celular/fisiologia , Interneurônios/fisiologia , Proteínas Repressoras/metabolismo , Medula Espinal/embriologia , Medula Espinal/fisiologia , Animais , Animais Recém-Nascidos , Axônios/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hibridização In Situ , Interneurônios/patologia , Vértebras Lombares , Camundongos Transgênicos , Mutação , Técnicas de Rastreamento Neuroanatômico , Proteínas Repressoras/genética , Medula Espinal/patologia , Vértebras Torácicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA